Camilla Gustafsson
Åbo Akademi University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Camilla Gustafsson.
Ecology Letters | 2015
J. Emmett Duffy; Pamela L. Reynolds; Christoffer Boström; James A. Coyer; Mathieu Cusson; Serena Donadi; James G. Douglass; Johan S. Eklöf; Aschwin H. Engelen; Britas Klemens Eriksson; Stein Fredriksen; Lars Gamfeldt; Camilla Gustafsson; Galice Hoarau; Masakazu Hori; Kevin A. Hovel; Katrin Iken; Jonathan S. Lefcheck; Per-Olav Moksnes; Masahiro Nakaoka; Mary I. O'Connor; Jeanine L. Olsen; J. Paul Richardson; Jennifer L. Ruesink; Erik E. Sotka; Jonas Thormar; Matthew A. Whalen; John J. Stachowicz
Nutrient pollution and reduced grazing each can stimulate algal blooms as shown by numerous experiments. But because experiments rarely incorporate natural variation in environmental factors and biodiversity, conditions determining the relative strength of bottom-up and top-down forcing remain unresolved. We factorially added nutrients and reduced grazing at 15 sites across the range of the marine foundation species eelgrass (Zostera marina) to quantify how top-down and bottom-up control interact with natural gradients in biodiversity and environmental forcing. Experiments confirmed modest top-down control of algae, whereas fertilisation had no general effect. Unexpectedly, grazer and algal biomass were better predicted by cross-site variation in grazer and eelgrass diversity than by global environmental gradients. Moreover, these large-scale patterns corresponded strikingly with prior small-scale experiments. Our results link global and local evidence that biodiversity and top-down control strongly influence functioning of threatened seagrass ecosystems, and suggest that biodiversity is comparably important to global change stressors.
Aquatic Conservation-marine and Freshwater Ecosystems | 2014
Christoffer Boström; Susanne Baden; Anna-Christina Bockelmann; Karsten Dromph; Stein Fredriksen; Camilla Gustafsson; Dorte Krause-Jensen; Tiia Möller; Søren Laurentius Nielsen; Birgit Olesen; Jeanine L. Olsen; Leif Pihl; Eli Rinde
This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe. Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic. Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows. The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them.
Aquatic Conservation-marine and Freshwater Ecosystems | 2014
Christoffer Boström; Susanne Baden; Anna-Christina Bockelmann; Karsten Dromph; Stein Fredrikssen; Camilla Gustafsson; Dorte Krause-Jensen; Tiia Möller; Søren Laurentius Nielsen; Birgit Olesen; Jeanine L. Olsen; Leif Pihl; Eli Rinde
This paper focuses on the marine foundation eelgrass species, Zostera marina, along a gradient from the northern Baltic Sea to the north-east Atlantic. This vast region supports a minimum of 1480 km2 eelgrass (maximum >2100 km2), which corresponds to more than four times the previously quantified area of eelgrass in Western Europe. Eelgrass meadows in the low salinity Baltic Sea support the highest diversity (4–6 spp.) of angiosperms overall, but eelgrass productivity is low (<2 g dw m-2 d-1) and meadows are isolated and genetically impoverished. Higher salinity areas support monospecific meadows, with higher productivity (3–10 g dw m-2 d-1) and greater genetic connectivity. The salinity gradient further imposes functional differences in biodiversity and food webs, in particular a decline in number, but increase in biomass of mesograzers in the Baltic. Significant declines in eelgrass depth limits and areal cover are documented, particularly in regions experiencing high human pressure. The failure of eelgrass to re-establish itself in affected areas, despite nutrient reductions and improved water quality, signals complex recovery trajectories and calls for much greater conservation effort to protect existing meadows. The knowledge base for Nordic eelgrass meadows is broad and sufficient to establish monitoring objectives across nine national borders. Nevertheless, ensuring awareness of their vulnerability remains challenging. Given the areal extent of Nordic eelgrass systems and the ecosystem services they provide, it is crucial to further develop incentives for protecting them.
PLOS ONE | 2013
Camilla Gustafsson; Christoffer Boström
Stressful environments may enhance the occurrence of facilitative interspecific interactions between plants. In several regions, Zostera marina occurs in mixed assemblages. However, the potential effects of plant diversity on stress responses and stability properties of Z. marina are poorly understood. We investigated the resistance and recovery of Z. marina subjected to shading (1 mo) in a field experiment lasting 2.5 mo. We shaded Z. marina planted in mono- and polycultures (Potamogeton perfoliatus, P. pectinatus, P. filiformis) in a factorial design (Shading×Richness) at 2 m depth. We estimated the resistance and recovery of Z. marina by measuring four response variables. Polyculture Z. marina lost proportionally less biomass than monocultures, thus having a greater resistance to shading. In contrast, after a 1 mo recovery period, monocultures exhibited higher biomass gain, and a faster recovery than polycultures. Our results suggest that plant species richness enhances the resistance of Z. marina through facilitative mechanisms, while the faster recovery in monocultures is possibly due to interspecific competition. Our results highlight the need of a much better understanding of the effects of interspecific interactions on ecosystem processes in mixed seagrass meadows, and the preservation of diverse plant assemblages to maintain ecosystem functioning.
Ecosystems | 2016
Tiina Salo; Camilla Gustafsson
In species-poor communities, genetic diversity potentially plays an important role for ecosystem functioning, though this is still largely unexplored in marine and estuarine ecosystems. We studied how genetic diversity (sensu genotypic diversity and/or allelic richness) affects ecosystem functioning in marine habitat-forming plant communities. First, we conducted a 15-month field experiment in the highly seasonal Baltic Sea and established mono- and polycultures of different genotypes and genotype combinations of Zostera marina. Second, we reviewed existing literature and performed a meta-analysis of 12 studies including this study. We found no evidence of positive genetic diversity effects on shoot production in the field experiment, but diversity enhanced community stability over time. The literature review revealed that a majority of the included studies observed positive effects of genetic diversity on ecosystem functions such as primary production and nutrient uptake. The results from the meta-analysis support the hypothesis that genetic diversity effects on productivity are stronger during or after periods of stress. These diversity effects were also more positive in the field compared to mesocosm studies. Our results indicate that genetic diversity has positive effects on ecosystem functioning, particularly during increased environmental stress. Thus, local genetic diversity should be preserved especially in species-poor ecosystems, where it potentially provides insurance against environmental change.
Journal of Ecology | 2018
Camilla Gustafsson; Alf Norkko
1. Aquatic plant meadows are important coastal habitats that sustain many ecosystem functions such as primary production and carbon sequestration. Currently, there is a knowledge gap in understandi ...
Journal of Experimental Marine Biology and Ecology | 2018
Charlotte Angove; Alf Norkko; Camilla Gustafsson
Abstract Aquatic plant meadows are valuable components to the ‘coastal filter’ and it is important to understand the processes that drive their ability to cycle nutrients. However, at present, the field-based evidence for understanding the drivers of nutrient uptake by plants is lacking. This study aimed to investigate how well individual shoots of aquatic plants could meet their nitrogen demands using the sediment nutrient pool (porewater ammonium) and to explore which traits helped to facilitate such uptake. Several species were investigated in shallow, submerged (2–4 m) mixed-species communities in the northern Baltic Sea using incubation experiments with enriched ammonium. After a 3.5 h incubation time, individuals were collected and analysed for nitrogen (% DW) and 15 N (at-%) concentrations. Uptake by plants was calculated per unit nitrogen in response to the 15 N-labelled source and to overall nitrogen availability. Background porewater ammonium availability was highly variable between individual plants. Species identity did not significantly affect uptake metrics and the effect of ambient porewater availability was weak. As biomass increased there were significant logarithmic declines in the 95th quantiles of nutrient uptake rates, ambient porewater nutrient availability and aboveground nitrogen tissue concentrations (% DW). Such findings suggested that uptake rates of plants were significantly demand-driven and the nutrient conditions of the porewater were significantly driven by the demands of the plant. Findings parameterised the unfulfilled potential for some aquatic plants to cycle nutrients more efficiently and highlighted the potential importance of access to new nutrient sources as a way of enhancing nutrient cycling by aquatic plants. Plant traits and community properties such as the activity of infauna could facilitate such an access and are likely important for nutrient uptake.
Marine Ecology Progress Series | 2008
Johanna Mattila; Kenneth L. Heck; Erika Millstein; Emily Miller; Camilla Gustafsson; Savannah Williams; Dorothy Byron
Oikos | 2011
Camilla Gustafsson; Christoffer Boström
Journal of Experimental Marine Biology and Ecology | 2009
Camilla Gustafsson; Christoffer Boström