Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camilla Mohlin is active.

Publication


Featured researches published by Camilla Mohlin.


Experimental Eye Research | 2010

Human neural progenitor cells promote photoreceptor survival in retinal explants.

Ulrica Englund-Johansson; Camilla Mohlin; Ingela Liljekvist-Soltic; Per Ekström; Kjell Johansson

Different types of progenitor and stem cells have been shown to provide neuroprotection in animal models of photoreceptor degeneration. The present study was conducted to investigate whether human neural progenitor cells (HNPCs) have neuroprotective properties on retinal explants models with calpain- and caspase-3-dependent photoreceptor cell death. In the first experiments, HNPCs in a feeder layer were co-cultured for 6 days either with postnatal rd1 mouse or normal rat retinas. Retinal histological sections were used to determine outer nuclear layer (ONL) thickness, and to detect the number of photoreceptors with labeling for calpain activity, cleaved caspase-3 and TUNEL. The ONL thickness of co-cultured rat and rd1 retinas was found to be almost 10% and 40% thicker, respectively, compared to controls. Cell counts of calpain activity, cleaved caspase-3 and TUNEL labeled photoreceptors in both models revealed a 30-50% decrease when co-cultured with HNPCs. The results represent significant increases of photoreceptor survival in the co-cultured retinas. In the second experiments, for an identification of putative survival factors, or a combination of them, a growth factor profile was performed on conditioned medium. The relative levels of various growth factors were analyzed by densitometric measurements of growth factor array membranes. Following growth factors were identified as most potential survival factors; granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GMCSF), insulin-like growth factor II (IGF-II), neurotrophic factor 3 (NT-3), placental growth factor (PIGF), transforming growth factors (TGF-beta1 and TGF-beta2) and vascular endothelial growth factor (VEGF-D). HNPCs protect both against calpain- and caspase-3-dependent photoreceptor cell death in the rd1 mouse and against caspase-3-dependent photoreceptor cell death in normal rat retinas in vitro. The protective effect is possibly achieved by a variety of growth factors secreted from the HNPCs.


Infection and Immunity | 2011

Activation of adenosine A2A receptors inhibits neutrophil transuroepithelial migration.

Susanne Säve; Camilla Mohlin; Ravi Vumma; Katarina Persson

ABSTRACT Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways.


Journal of Virology | 2010

A Single Coxsackievirus B2 Capsid Residue Controls Cytolysis and Apoptosis in Rhabdomyosarcoma Cells

Maria Gullberg; Conny Tolf; Nina Jonsson; Charlotta Polacek; Jana Precechtelova; Miriam Badurova; Martin Sojka; Camilla Mohlin; Stina Israelsson; Kjell Johansson; Shubhada Bopegamage; Susan Hafenstein; A. Michael Lindberg

ABSTRACT Coxsackievirus B2 (CVB2), one of six human pathogens of the group B coxsackieviruses within the enterovirus genus of Picornaviridae, causes a wide spectrum of human diseases ranging from mild upper respiratory illnesses to myocarditis and meningitis. The CVB2 prototype strain Ohio-1 (CVB2O) was originally isolated from a patient with summer grippe in the 1950s. Later on, CVB2O was adapted to cytolytic replication in rhabdomyosarcoma (RD) cells. Here, we present analyses of the correlation between the adaptive mutations of this RD variant and the cytolytic infection in RD cells. Using reverse genetics, we identified a single amino acid change within the exposed region of the VP1 protein (glutamine to lysine at position 164) as the determinant for the acquired cytolytic trait. Moreover, this cytolytic virus induced apoptosis, including caspase activation and DNA degradation, in RD cells. These findings contribute to our understanding of the host cell adaptation process of CVB2O and provide a valuable tool for further studies of virus-host interactions.


Brain Research | 2014

Autophagy and ER-stress contribute to photoreceptor degeneration in cultured adult porcine retina

Camilla Mohlin; Linnéa Taylor; Fredrik Ghosh; Kjell Johansson

The aim of this study was to investigate rod and cone photoreceptor degeneration in organotypic cultures of adult porcine retina. Our hypothesis was that the photoreceptors accumulate opsins, which, together with exposure to cyclic dim light illumination, induce autophagy and endoplasmic reticulum stress (ER-stress) to overcome damaging protein overload. For this purpose, retinas were cultured for 48 h and 72 h during which they were illuminated with dim light for 8h/day; specimens were analyzed by means of immunohistochemistry, Western blot, real-time polymerase chain reaction (PCR) and transmission electron microscopy. ER-stress and photoreceptor degeneration was observed in conventionally cultured retinas. The additional stress in the form of dim light illumination for 8h/day resulted in increased levels of the ER-stress markers GRP78/BiP and CHOP, as well as increased level of active caspase-12. Increased autophagic processes in cone and rod photoreceptors were detected by LC3B-II increases and occurrence of autophagosomes at the ultrastructural level. Illumination also resulted in altered protein expression for autophagy inducers such as p62 and Beclin-1. Moreover, there was a decrease in phosphorylated mammalian target of rapamycin (mTOR), which further indicate an increase of autophagy. Rod and cone photoreceptors in retinas from a diurnal animal that were exposed to dim light illumination in vitro displayed autophagy and ER-stress processes. As no alteration of rhodopsin mRNA was observed, autophagy and ER-stress are suggested to decrease rhodopsin protein at the posttranscriptional level.


BJUI | 2009

Adenosine receptor expression in Escherichia coli-infected and cytokine-stimulated human urinary tract epithelial cells

Susanne Säve; Jenny Mjösberg; Mirjana Poljakovic; Camilla Mohlin; Katarina Persson

To assess the expression and regulation of adenosine receptors in unstimulated, uropathogenic Escherichia coli (UPEC)‐infected and cytokine‐stimulated human urinary tract epithelial cells, and to examine the regulation of interleukin (IL)‐6 secretion in response to A2A receptor activation.


American Journal of Nephrology | 2012

Nitric Oxide Activates IL-6 Production and Expression in Human Renal Epithelial Cells

Isak Demirel; Ravi Vumma; Camilla Mohlin; Lovisa Svensson; Susanne Säve; Katarina Persson

Background/Aims: Increased nitric oxide (NO) production or inducible form of NO synthase activity have been documented in patients suffering from urinary tract infection (UTI), but the role of NO in this infection is unclear. We investigated whether NO can affect the host response in human renal epithelial cells by modulating IL-6 production and mRNA expression. Methods: The human renal epithelial cell line A498 was infected with a uropathogenic Escherichia coli (UPEC) strain and/or the NO donor DETA/NO. The IL-6 production and mRNA expression were evaluated by ELISA and real-time RT-PCR. IL-6 mRNA stability was evaluated by analyzing mRNA degradation by real-time RT-PCR. Results: DETA/NO caused a significant (p < 0.05) increase in IL-6 production. Inhibitors of p38 MAPK and ERK1/2 signaling, but not JNK, were shown to significantly suppress DETA/NO-induced IL-6 production. UPEC-induced IL-6 production was further increased (by 73 ± 23%, p < 0.05) in the presence of DETA/NO. The IL-6 mRNA expression increased 2.1 ± 0.17-fold in response to DETA/NO, while the UPEC-evoked increase was pronounced (20 ± 4.5-fold). A synergistic effect of DETA/NO on UPEC-induced IL-6 expression was found (33 ± 7.2-fold increase). The IL-6 mRNA stability studies showed that DETA/NO partially attenuated UPEC-induced degradation of IL-6 mRNA. Conclusions: NO was found to stimulate IL-6 in renal epithelial cells through p38 MAPK and ERK1/2 signaling pathways and also to increase IL-6 mRNA stability in UPEC-infected cells. This study proposes a new role for NO in the host response during UTI by modulating the transcription and production of the cytokine IL-6.


Journal of Neuroscience Methods | 2011

Death of photoreceptors in organotypic retinal explant cultures: implication of rhodopsin accumulation and endoplasmic reticulum stress.

Camilla Mohlin; Kjell Johansson

Here we suggest that endoplasmic reticulum (ER)-stress may be induced following aberrant rhodopsin accumulation in photoreceptors in explanted rat retinas. Rhodopsin accumulation was accompanied by increased phosphorylation of pancreatic ER-kinase and eukaryotic initiator factor 2α as well as increased levels of C/EBP homologous protein, glucose-regulated protein 78 and eventually increased cleaved caspase-12 and cleaved caspase-3. Glucose-regulated protein 78, pancreatic ER-kinase, caspase-12 and cleaved caspase-3 were present in photoreceptors, indicating that ER-stress and apoptosis are induced in this cell population. These results suggest that ER-stress and subsequent apoptosis is induced in healthy photoreceptors, presumably by aberrant accumulation of rhodopsin and the phosphorylation of eukaryotic initiator factor 2α. The explant culture system may allow investigations of neuroprotective strategies.


Pharmacology | 2009

Studies of the extracellular ATP-adenosine pathway in human urinary tract epithelial cells.

Camilla Mohlin; Susanne Säve; Mikael Nilsson; Katarina Persson

Aims: Extracellular ATP may be metabolized to AMP and adenosine by the ectonucleotidases CD39 and CD73 and, in this study, we characterized the pathways for adenosine formation in human urinary tract epithelial cells. Methods: Bladder (RT4) and kidney (A498) epithelial cells were grown in cell culture and the expression of CD39 and CD73 was investigated by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. High-performance liquid chromatography was used to determine adenosine formation in cell medium. Results: RT-PCR and immunohistochemistry revealed a high CD73 and a low CD39 expression in human urinary tract epithelial cells, whereas neutrophils had a higher CD39 than CD73 expression. Adenosine was produced when the cells were exposed to 5′-AMP (substrate for CD73), but not when exposed to 5′-ATP (substrate for CD39). A pronounced inhibition of 5′-AMP-induced adenosine formation by the CD73 inhibitor AMP-CP confirmed the involvement of CD73. Adenosine production from 5′-ATP was slightly increased (p < 0.05) when epithelial cells were cocultured with neutrophils. Conclusions: The data demonstrate that adenosine formation from extracellular ATP is negligible in urinary tract epithelial cells due to low CD39 expression in this cell type. However, the epithelial cells express CD73 and are able to convert extracellular AMP to adenosine.


Brain Research | 2016

Human neural progenitor cells decrease photoreceptor degeneration, normalize opsin distribution and support synapse structure in cultured porcine retina

Tanzina Mollick; Camilla Mohlin; Kjell Johansson

Retinal neurodegenerative disorders like retinitis pigmentosa, age-related macular degeneration, diabetic retinopathy and retinal detachment decrease retinal functionality leading to visual impairment. The pathological events are characterized by photoreceptor degeneration, synaptic disassembly, remodeling of postsynaptic neurons and activation of glial cells. Despite intense research, no effective treatment has been found for these disorders. The current study explores the potential of human neural progenitor cell (hNPC) derived factors to slow the degenerative processes in adult porcine retinal explants. Retinas were cultured for 3 days with or without hNPCs as a feeder layer and investigated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), immunohistochemical, western blot and quantitative real time-polymerase chain reaction (qRT-PCR) techniques. TUNEL showed that hNPCs had the capacity to limit photoreceptor cell death. Among cone photoreceptors, hNPC coculture resulted in better maintenance of cone outer segments and reduced opsin mislocalization. Additionally, maintained synaptic structural integrity and preservation of second order calbindin positive horizontal cells was also observed. However, Müller cell gliosis only seemed to be alleviated in terms of reduced Müller cell density. Our observations indicate that at 3 days of coculture, hNPC derived factors had the capacity to protect photoreceptors, maintain synaptic integrity and support horizontal cell survival. Human neural progenitor cell applied treatment modalities may be an effective strategy to help maintain retinal functionality in neurodegenerative pathologies. Whether hNPCs can independently hinder Müller cell gliosis by utilizing higher concentrations or by combination with other pharmacological agents still needs to be determined.


Molecular Immunology | 2017

The link between morphology and complement in ocular disease

Camilla Mohlin; Kerstin Sandholm; Kristina Nilsson Ekdahl; Bo Nilsson

&NA; The complement system is a vital component of the immune‐priveliged human eye that is always active at a low‐grade level, preventing harmful intraocular injuries caused by accumulation of turnover products and controlling pathogens to preserve eye homeostasis and vision. The complement system is a double‐edged sword that is essential for protection but may also become harmful and contribute to eye pathology. Here, we review the evidence for the involvement of complement system dysregulation in age‐related macular degeneration, glaucoma, uveitis, and neuromyelitis optica, highlighting the relationship between morphogical changes and complement system protein expression and regulation in these diseases. The potential benefits of complement inhibition in age‐related macular degeneration, glaucoma, uveitis, and neuromyelitis optica are abundant, as are those of further research to improve our understanding of complement‐mediated injury in these diseases.

Collaboration


Dive into the Camilla Mohlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge