Camilla Scheele
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Camilla Scheele.
FEBS Journal | 2013
Pura Muñoz-Cánoves; Camilla Scheele; Bente Klarlund Pedersen; Antonio Serrano
Interleukin (IL)‐6 is a cytokine with pleiotropic functions in different tissues and organs. Skeletal muscle produces and releases significant levels of IL‐6 after prolonged exercise and is therefore considered as a myokine. Muscle is also an important target of the cytokine. IL‐6 signaling has been associated with stimulation of hypertrophic muscle growth and myogenesis through regulation of the proliferative capacity of muscle stem cells. Additional beneficial effects of IL‐6 include regulation of energy metabolism, which is related to the capacity of actively contracting muscle to synthesize and release IL‐6. Paradoxically, deleterious actions for IL‐6 have also been proposed, such as promotion of atrophy and muscle wasting. We review the current evidence for these apparently contradictory effects, the mechanisms involved and discuss their possible biological implications.
Genome Medicine | 2010
Iain J. Gallagher; Camilla Scheele; Pernille Keller; Anders Rinnov Nielsen; Judit Remenyi; Christian P. Fischer; Karim Roder; John A. Babraj; Claes Wahlestedt; Gyorgy Hutvagner; Bente Klarlund Pedersen; James A. Timmons
BackgroundSkeletal muscle insulin resistance (IR) is considered a critical component of type II diabetes, yet to date IR has evaded characterization at the global gene expression level in humans. MicroRNAs (miRNAs) are considered fine-scale rheostats of protein-coding gene product abundance. The relative importance and mode of action of miRNAs in human complex diseases remains to be fully elucidated. We produce a global map of coding and non-coding RNAs in human muscle IR with the aim of identifying novel disease biomarkers.MethodsWe profiled >47,000 mRNA sequences and >500 human miRNAs using gene-chips and 118 subjects (n = 71 patients versus n = 47 controls). A tissue-specific gene-ranking system was developed to stratify thousands of miRNA target-genes, removing false positives, yielding a weighted inhibitor score, which integrated the net impact of both up- and down-regulated miRNAs. Both informatic and protein detection validation was used to verify the predictions of in vivo changes.ResultsThe muscle mRNA transcriptome is invariant with respect to insulin or glucose homeostasis. In contrast, a third of miRNAs detected in muscle were altered in disease (n = 62), many changing prior to the onset of clinical diabetes. The novel ranking metric identified six canonical pathways with proven links to metabolic disease while the control data demonstrated no enrichment. The Benjamini-Hochberg adjusted Gene Ontology profile of the highest ranked targets was metabolic (P < 7.4 × 10-8), post-translational modification (P < 9.7 × 10-5) and developmental (P < 1.3 × 10-6) processes. Protein profiling of six development-related genes validated the predictions. Brain-derived neurotrophic factor protein was detectable only in muscle satellite cells and was increased in diabetes patients compared with controls, consistent with the observation that global miRNA changes were opposite from those found during myogenic differentiation.ConclusionsWe provide evidence that IR in humans may be related to coordinated changes in multiple microRNAs, which act to target relevant signaling pathways. It would appear that miRNAs can produce marked changes in target protein abundance in vivo by working in a combinatorial manner. Thus, miRNA detection represents a new molecular biomarker strategy for insulin resistance, where micrograms of patient material is needed to monitor efficacy during drug or life-style interventions.
The Journal of Physiology | 2010
Søren Nielsen; Camilla Scheele; Christina Yfanti; Thorbjorn Akerstrom; Anders Rinnov Nielsen; Bente Klarlund Pedersen; Matthew J. Laye
Muscle specific miRNAs, myomiRs, have been shown to control muscle development in vitro and are differentially expressed at rest in diabetic skeletal muscle. Therefore, we investigated the expression of these myomiRs, including miR‐1, miR‐133a, miR‐133b and miR‐206 in muscle biopsies from vastus lateralis of healthy young males (n= 10) in relation to a hyperinsulinaemic–euglycaemic clamp as well as acute endurance exercise before and after 12 weeks of endurance training. The subjects increased their endurance capacity, (l min−1) by 17.4% (P < 0.001), and improved insulin sensitivity by 19% (P < 0.01). While myomiR expression remained stable during a hyperinsulinaemic–euglycaemic clamp, an acute bout of exercise increased mir‐1 (P < 0.05) and mir‐133a (P < 0.05) expression before, but not after, training. In resting biopsies, endurance training for 12 weeks decreased basal expression of all four myomiRs (P < 0.05). Interestingly, all myomiRs reverted to their pre‐training expression levels 14 days after ceasing the training programme. Components of major pathways involved in endurance adaptation such as MAPK and TGF‐β were predicted to be targeted by the myomiRs examined. Tested predicted target proteins included Cdc42 and ERK 1/2. Although these proteins were downregulated between post‐training period and 2 weeks of cessation, an inverse correlation between myomiR and target proteins was not found. In conclusion, our data suggest myomiRs respond to physiological stimuli, but their role in regulating human skeletal muscle adaptation remains unknown.
Diabetes | 2014
Emma Nilsson; Per-Anders Jansson; Alexander Perfilyev; Petr Volkov; Maria Pedersen; Maria Svensson; Pernille Poulsen; Rasmus Ribel-Madsen; Nancy L. Pedersen; Peter Almgren; João Fadista; Tina Rönn; Bente Klarlund-Pedersen; Camilla Scheele; Allan Vaag; Charlotte Ling
Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed genes included ELOVL6, GYS2, FADS1, SPP1 (OPN), CCL18, and IL1RN. We replicated these results in adipose tissue from an independent case-control cohort. Several candidate genes for obesity and T2D (e.g., IRS1 and VEGFA) were differentially expressed in discordant twins. We found a heritable contribution to the genome-wide DNA methylation variability in twins. Differences in methylation between monozygotic twin pairs discordant for T2D were subsequently modest. However, 15,627 sites, representing 7,046 genes including PPARG, KCNQ1, TCF7L2, and IRS1, showed differential DNA methylation in adipose tissue from unrelated subjects with T2D compared with control subjects. A total of 1,410 of these sites also showed differential DNA methylation in the twins discordant for T2D. For the differentially methylated sites, the heritability estimate was 0.28. We also identified copy number variants (CNVs) in monozygotic twin pairs discordant for T2D. Taken together, subjects with T2D exhibit multiple transcriptional and epigenetic changes in adipose tissue relevant to the development of the disease.
PLOS ONE | 2014
Søren Nielsen; Thorbjorn Akerstrom; Anders Rinnov; Christina Yfanti; Camilla Scheele; Bente Klarlund Pedersen; Matthew J. Laye
MiRNAs are potent intracellular posttranscriptional regulators and are also selectively secreted into the circulation in a cell-specific fashion. Global changes in miRNA expression in skeletal muscle in response to endurance exercise training have been reported. Therefore, our aim was to establish the miRNA signature in human plasma in response to acute exercise and chronic endurance training by utilizing a novel methodological approach. RNA was isolated from human plasma collected from young healthy men before and after an acute endurance exercise bout and following 12 weeks of endurance training. Global miRNA (742 miRNAs) measurements were performed as a screening to identify detectable miRNAs in plasma. Using customized qPCR panels we quantified the expression levels of miRNAs detected in the screening procedure (188 miRNAs). We demonstrate a dynamic regulation of circulating miRNA (ci-miRNA) levels following 0 hour (miR-106a, miR-221, miR-30b, miR-151-5p, let-7i, miR-146, miR-652 and miR-151-3p), 1 hour (miR-338-3p, miR-330-3p, miR-223, miR-139-5p and miR-143) and 3 hours (miR-1) after an acute exercise bout (P<0.00032). Where ci-miRNAs were all downregulated immediately after an acute exercise bout (0 hour) the 1 and 3 hour post exercise timepoints were followed by upregulations. In response to chronic training, we identified seven ci-miRNAs with decreased levels in plasma (miR-342-3p, let-7d, miR-766, miR-25, miR-148a, miR-185 and miR-21) and two miRNAs that were present at higher levels after the training period (miR-103 and miR-107) (P<0.00032). In conclusion, acute exercise and chronic endurance training, likely through specific mechanisms unique to each stimulus, robustly modify the miRNA signature of human plasma.
BMC Genomics | 2007
Camilla Scheele; Natasa Petrovic; Mohammad Ali Faghihi; Timo Lassmann; Katarina Fredriksson; Olav Rooyackers; Claes Wahlestedt; Liam Good; James A. Timmons
BackgroundMutations in the PTEN induced putative kinase 1 (PINK1) are implicated in early-onset Parkinsons disease. PINK1 is expressed abundantly in mitochondria rich tissues, such as skeletal muscle, where it plays a critical role determining mitochondrial structural integrity in Drosophila.ResultsHerein we characterize a novel splice variant of PINK1 (svPINK1) that is homologous to the C-terminus regulatory domain of the protein kinase. Naturally occurring non-coding antisense provides sophisticated mechanisms for diversifying genomes and we describe a human specific non-coding antisense expressed at the PINK1 locus (naPINK1). We further demonstrate that PINK1 varies in vivo when human skeletal muscle mitochondrial content is enhanced, supporting the idea that PINK1 has a physiological role in mitochondrion. The observation of concordant regulation of svPINK1 and naPINK1 during in vivo mitochondrial biogenesis was confirmed using RNAi, where selective targeting of naPINK1 results in loss of the PINK1 splice variant in neuronal cell lines.ConclusionOur data presents the first direct observation that a mammalian non-coding antisense molecule can positively influence the abundance of a cis-transcribed mRNA under physiological abundance conditions. While our analysis implies a possible human specific and dsRNA-mediated mechanism for stabilizing the expression of svPINK1, it also points to a broader genomic strategy for regulating a human disease locus and increases the complexity through which alterations in the regulation of the PINK1 locus could occur.
Cell and Tissue Research | 2003
Anna Josephson; Alexandra Trifunovski; Camilla Scheele; Johan Widenfalk; Claes Wahlestedt; Stefan Brené; Lars Olson; Christian Spenger
Abstract.The three axon growth inhibitory proteins, myelin associated glycoprotein, oligodendrocyte-myelin glycoprotein and Nogo-A, can all bind to the Nogo-66 receptor (NgR). This receptor is expressed by neurons with high amounts in regions of high plasticity where Nogo expression is also high. We hypothesized that simultaneous presence of high levels of Nogo and its receptor in neurons confers a locked state to hippocampal and cortical microcircuitry and that one or both of these proteins must be effectively and temporarily downregulated to permit plastic structural changes underlying formation of long-term memory. Hence, we subjected rats to kainic acid treatment and exposed rats to running wheels and measured NgR mRNA levels by quantitative in situ hybridization at different time points. We also studied spinal cord injuries and quantified NgR mRNA levels in spinal cord and ganglia during a critical postnatal period using real-time PCR. Strikingly, kainic acid led to a strong transient downregulation of NgR mRNA levels in gyrus dentatus, hippocampus, and neocortex during a time when BDNF mRNA was upregulated instead. Animals exposed to running wheels for 3 and 7, but not 1 or 21, days showed a significant downregulation of NgR mRNA in cortex, hippocampus and the dentate gyrus. NgR mRNA levels decreased from high to low expression in spinal cord and ganglia during the first week of life. No robust regulation of NgR was observed in the spinal cord following spinal cord injury. Together, our data show that NgR levels in developing and adult neurons are regulated in vivo under different conditions. Strong, rapid and transient downregulation of NgR mRNA in response to kainic acid and after wheel running in cortex and hippocampus suggests a role for NgR and Nogo-A in plasticity, learning and memory.
The FASEB Journal | 2007
Camilla Scheele; Anders Rinnov Nielsen; Tomas B. Walden; Dean Alan Sewell; Christian P. Fischer; Robert J. Brogan; Natasa Petrovic; Ola Larsson; Per A. Tesch; Kristian Wennmalm; Dana S. Hutchinson; Barbara Cannon; Claes Wahlestedt; Bente Klarlund Pedersen; James A. Timmons
Mutations in PINK1 cause the mitochon‐drial‐related neurodegenerative disease Parkinsons. Here we investigate whether obesity, type 2 diabetes, or inactivity alters transcription from the PINK1 locus. We utilized a cDNA‐array and quantitative real‐time PCR for gene expression analysis of muscle from healthy volunteers following physical inactivity, and muscle and adipose tissue from nonobese or obese subjects with normal glucose tolerance or type 2 diabetes. Functional studies of PINK1 were performed utilizing RNAinterference in cell culture models. Following inactivity, the PINK1 locus had an opposing regulation pattern (PINK1 was down‐regu‐lated while natural antisense PINK1 was up‐regulated). In type 2 diabetes skeletal muscle, all transcripts from the PINK1 locus were suppressed and gene expression correlated with diabetes status. RNA interference of PINK1 in human neuronal cell lines impaired basal glucose uptake. In adipose tissue, mitochondrial gene expression correlated with PINK1 expression although remained unaltered following siRNA knockdown of Pink1 in primary cultures of brown preadipocytes. In conclusion, regulation of the PINK1 locus, previously linked to neurodegen‐erative disease, is altered in obesity, type 2 diabetes and inactivity, while the combination of RNAi experiments and clinical data suggests a role for PINK1 in cell energetics rather than in mitochondrial biogenesis.—Scheele C., Nielsen, A. R., Walden, T. B., Sewell, D. A., Fischer, C. P., Brogan, R. J., Petrovic, N., Larsson, O., Tesch, P. A., Wennmalm, K., Hutchinson, D. S., Cannon, B., Wahlestedt C., Pedersen, B. K., Timmons J. A. Altered regulation of the PINK1 locus: a link between Type 2 diabetes and neurodegeneration? FASEB J. 21, 3653–3665 (2007)
Diabetes | 2011
Charlotte J. Green; Maria Pedersen; Bente Klarlund Pedersen; Camilla Scheele
OBJECTIVE To examine whether the inflammatory phenotype found in obese and diabetic individuals is preserved in isolated, cultured myocytes and to assess the effectiveness of pharmacological AMP-activated protein kinase (AMPK) activation upon the attenuation of inflammation in these myocytes. RESEARCH DESIGN AND METHODS Muscle precursor cells were isolated from four age-matched subject groups: 1) nonobese, normal glucose tolerant; 2) obese, normal glucose tolerant; 3) obese, impaired glucose tolerant; and 4) obese, type 2 diabetes (T2D). The level of inflammation (nuclear factor-κB [NF-κB] signaling) and effect of pharmacological AMPK activation was assessed by Western blots, enzyme-linked immunosorbent assay, and radioactive assays (n = 5 for each subject group). RESULTS NF-κB-p65 DNA binding activity was significantly elevated in myocytes from obese T2D patients compared with nonobese control subjects. This correlated to a significant increase in tumor necrosis factor-α concentration in cell culture media. In addition, insulin-stimulated glucose uptake was completely suppressed in myocytes from obese impaired glucose tolerant and T2D subjects. It is interesting that activation of AMPK by A769662 attenuated NF-κB-p65 DNA binding activity in obese T2D cells to levels measured in nonobese myocytes; however, this had no effect on insulin sensitivity of the cells. CONCLUSIONS This work provides solid evidence that differentiated human muscle precursor cells maintain in vivo phenotypes of inflammation and insulin resistance and that obesity alone may not be sufficient to establish inflammation in these cells. It is important that we demonstrate an anti-inflammatory role for AMPK in these human cells. Despite attenuation of NF-κB activity by AMPK, insulin resistance in obese T2D cells remained, suggesting factors in addition to inflammation may contribute to the insulin resistance phenotype in muscle cells.
Journal of Applied Physiology | 2011
Christa Broholm; Matthew J. Laye; Claus Brandt; Radhika Vadalasetty; Henriette Pilegaard; Bente Klarlund Pedersen; Camilla Scheele
The cytokine leukemia inhibitory factor (LIF) is expressed by skeletal muscle and induces proliferation of myoblasts. We hypothesized that LIF is a contraction-induced myokine functioning in an autocrine fashion to activate gene regulation of human muscle satellite cell proliferation. Skeletal muscle LIF expression, regulation, and action were examined in two models: 1) young men performing a bout of heavy resistance exercise of the quadriceps muscle and 2) cultured primary human satellite cells. Resistance exercise induced a ninefold increase in LIF mRNA content in skeletal muscle, but LIF was not detectable in plasma of the subjects. However, electrically stimulated cultured human myotubes produced and secreted LIF, suggesting that LIF is a myokine with local effects. The well established exercise-induced signaling molecules PI3K, Akt, and mTor contributed to the regulation of LIF in cultured human myotubes as chemical inhibition of PI3K and mTor and siRNA knockdown of Akt1 were independently sufficient to downregulate LIF. Human myoblast proliferation was increased by recombinant exogenous LIF and decreased by siRNA knockdown of the endogenous LIF receptor. Finally, the transcription factors JunB and c-Myc, which promote myoblast proliferation, were induced by LIF in cultured human myotubes. Indeed, both JunB and c-Myc were also increased in skeletal muscle following resistance exercise. Our data suggest that LIF is a contraction-induced myokine, potentially acting in an autocrine or paracrine fashion to promote satellite cell proliferation.