Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camilla Sjögren is active.

Publication


Featured researches published by Camilla Sjögren.


Current Biology | 2001

Sister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae

Camilla Sjögren; Kim Nasmyth

The repair of DNA double-strand breaks by recombination requires the presence of an undamaged copy that is used as a template during the repair process. Because cells acquire resistance to gamma irradiation during DNA replication and because sister chromatids are the preferred partner for double-strand break repair in mitotic diploid yeast cells, it has long been suspected that cohesion between sister chromatids might be crucial for efficient repair. This hypothesis is consistent with the sensitivity to gamma irradiation of mutants defective in the cohesin complex that holds sister chromatids together from DNA replication until the onset of anaphase (reviewed in) . It is also in accordance with the finding that surveillance mechanisms (checkpoints) that sense DNA damage arrest cell cycle progression in yeast by causing stabilization of the securin Pds1, thereby blocking sister chromatid separation. The hypersensitivity to irradiation of cohesin mutants could, however, be due to a more direct involvement of the cohesin complex in the process of DNA repair. We show here that passage through S phase in the presence of cohesin, and not cohesin per se, is essential for efficient double-strand break repair during G2 in yeast. Proteins needed to load cohesin onto chromosomes (Scc2) and to generate cohesion during S phase (Eco1) are also shown to be required for repair. Our results confirm what has long been suspected but never proven, that cohesion between sister chromatids is essential for efficient double-strand break repair in mitotic cells.


Nature Reviews Molecular Cell Biology | 2014

The maintenance of chromosome structure: positioning and functioning of SMC complexes

Kristian Jeppsson; Takaharu Kanno; Katsuhiko Shirahige; Camilla Sjögren

Structural maintenance of chromosomes (SMC) complexes, which in eukaryotic cells include cohesin, condensin and the Smc5/6 complex, are central regulators of chromosome dynamics and control sister chromatid cohesion, chromosome condensation, DNA replication, DNA repair and transcription. Even though the molecular mechanisms that lead to this large range of functions are still unclear, it has been established that the complexes execute their functions through their association with chromosomal DNA. A large set of data also indicates that SMC complexes work as intermolecular and intramolecular linkers of DNA. When combining these insights with results from ongoing analyses of their chromosomal binding, and how this interaction influences the structure and dynamics of chromosomes, a picture of how SMC complexes carry out their many functions starts to emerge.


Nature | 2011

Chromosome length influences replication-induced topological stress

Andreas Kegel; Hanna Betts-Lindroos; Takaharu Kanno; Kristian Jeppsson; Lena Ström; Yuki Katou; Takehiko Itoh; Katsuhiko Shirahige; Camilla Sjögren

During chromosome duplication the parental DNA molecule becomes overwound, or positively supercoiled, in the region ahead of the advancing replication fork. To allow fork progression, this superhelical tension has to be removed by topoisomerases, which operate by introducing transient DNA breaks. Positive supercoiling can also be diminished if the advancing fork rotates along the DNA helix, but then sister chromatid intertwinings form in its wake. Despite these insights it remains largely unknown how replication-induced superhelical stress is dealt with on linear, eukaryotic chromosomes. Here we show that this stress increases with the length of Saccharomyces cerevisiae chromosomes. This highlights the possibility that superhelical tension is handled on a chromosome scale and not only within topologically closed chromosomal domains as the current view predicts. We found that inhibition of type I topoisomerases leads to a late replication delay of longer, but not shorter, chromosomes. This phenotype is also displayed by cells expressing mutated versions of the cohesin- and condensin-related Smc5/6 complex. The frequency of chromosomal association sites of the Smc5/6 complex increases in response to chromosome lengthening, chromosome circularization, or inactivation of topoisomerase 2, all having the potential to increase the number of sister chromatid intertwinings. Furthermore, non-functional Smc6 reduces the accumulation of intertwined sister plasmids after one round of replication in the absence of topoisomerase 2 function. Our results demonstrate that the length of a chromosome influences the need of superhelical tension release in Saccharomyces cerevisiae, and allow us to propose a model where the Smc5/6 complex facilitates fork rotation by sequestering nascent chromatid intertwinings that form behind the replication machinery.


Cell Cycle | 2005

DNA damage-induced cohesion

Lena Ström; Camilla Sjögren

The protein complex Cohesin, forming protein-links that hold sister chromatids together, is at the heart of chromatid cohesion. Cohesion is important both for correct chromosome segregation and double-strand break (DSB) repair, making Cohesin central for the maintenance of genome stability. Until now, establishment of Cohesin links between chromatids has been shown to occur during DNA replication only. Recently it was however observed that in cells arrested in G2/M, DSB induction not only elicits chromosomal recruitment of Cohesin, but also formation of chromatid cohesion. The establishment of cohesion outside the period of replication opens a new field of investigation. Here we present results further supporting the formation of sister chromatid cohesion in response to DNA damage, and propose a model of how damage-induced cohesion could contribute to the linkage of chromatids during normal cell cycle progression.


Journal of Biological Chemistry | 2010

Midkine and Pleiotrophin Have Bactericidal Properties PRESERVED ANTIBACTERIAL ACTIVITY IN A FAMILY OF HEPARIN-BINDING GROWTH FACTORS DURING EVOLUTION

Sara L. Svensson; Mukesh Pasupuleti; Björn Walse; Martin Malmsten; Matthias Mörgelin; Camilla Sjögren; Anders I. Olin; Mattias Collin; Artur Schmidtchen; Ruth H. Palmer; Arne Egesten

Antibacterial peptides of the innate immune system combat pathogenic microbes, but often have additional roles in promoting inflammation and as growth factors during tissue repair. Midkine (MK) and pleiotrophin (PTN) are the only two members of a family of heparin-binding growth factors. They show restricted expression during embryogenesis and are up-regulated in neoplasia. In addition, MK shows constitutive and inflammation-dependent expression in some non-transformed tissues of the adult. In the present study, we show that both MK and PTN display strong antibacterial activity, present at physiological salt concentrations. Electron microscopy of bacteria and experiments using artificial lipid bilayers suggest that MK and PTN exert their antibacterial action via a membrane disruption mechanism. The predicted structure of PTN, employing the previously solved MK structure as a template, indicates that both molecules consist of two domains, each containing three antiparallel β-sheets. The antibacterial activity was mapped to the unordered C-terminal tails of both molecules and the last β-sheets of the N-terminals. Analysis of the highly conserved MK and PTN orthologues from the amphibian Xenopus laevis and the fish Danio rerio suggests that they also harbor antibacterial activity in the corresponding domains. In support of an evolutionary conserved function it was found that the more distant orthologue, insect Miple2 from Drosophila melanogaster, also displays strong antibacterial activity. Taken together, the findings suggest that MK and PTN, in addition to their earlier described activities, may have previously unrealized important roles as innate antibiotics.


Cold Spring Harbor Symposia on Quantitative Biology | 2010

The Smc5/6 complex: more than repair?

Andreas Kegel; Camilla Sjögren

Through its functions in chromosome replication, segregation, and repair, the Smc5/6 complex has a central role in the maintenance of genome stability. The complex is part of the family of structural maintenance of chromosome protein complexes that also includes cohesin and condensin. Mutations in any of these complexes disrupt chromosome segregation and render cells hypersensitive to different types of DNA damage. The chromosome mis-segregation phenotypes in cohesin and condensin mutants can be attributed to their functions in sister chromatid cohesion and chromosome condensation, respectively. Cohesin-dependent chromatid cohesion is also needed for DNA double-strand break repair, whereas condensin is required for repair of single-strand breaks. How Smc5/6 promotes chromosome stability is largely unknown. Accumulating data suggest that it prevents accumulation of aberrant DNA links between sister chromatids created during repair by homologous recombination. A long-standing idea is that it also has a role in the maintenance of nondamaged chromosomes. Here, we present an overview of the current knowledge of Smc5/6 and discuss a possible nonrepair role of the complex.


PLOS Genetics | 2014

The chromosomal association of the Smc5/6 complex depends on cohesion and predicts the level of sister chromatid entanglement.

Kristian Jeppsson; Kristian K. Carlborg; Ryuichiro Nakato; Davide G. Berta; Ingrid Lilienthal; Takaharu Kanno; Arne Lindqvist; Maartje C. Brink; Nico P. Dantuma; Yuki Katou; Katsuhiko Shirahige; Camilla Sjögren

The cohesin complex, which is essential for sister chromatid cohesion and chromosome segregation, also inhibits resolution of sister chromatid intertwinings (SCIs) by the topoisomerase Top2. The cohesin-related Smc5/6 complex (Smc5/6) instead accumulates on chromosomes after Top2 inactivation, known to lead to a buildup of unresolved SCIs. This suggests that cohesin can influence the chromosomal association of Smc5/6 via its role in SCI protection. Using high-resolution ChIP-sequencing, we show that the localization of budding yeast Smc5/6 to duplicated chromosomes indeed depends on sister chromatid cohesion in wild-type and top2-4 cells. Smc5/6 is found to be enriched at cohesin binding sites in the centromere-proximal regions in both cell types, but also along chromosome arms when replication has occurred under Top2-inhibiting conditions. Reactivation of Top2 after replication causes Smc5/6 to dissociate from chromosome arms, supporting the assumption that Smc5/6 associates with a Top2 substrate. It is also demonstrated that the amount of Smc5/6 on chromosomes positively correlates with the level of missegregation in top2-4, and that Smc5/6 promotes segregation of short chromosomes in the mutant. Altogether, this shows that the chromosomal localization of Smc5/6 predicts the presence of the chromatid segregation-inhibiting entities which accumulate in top2-4 mutated cells. These are most likely SCIs, and our results thus indicate that, at least when Top2 is inhibited, Smc5/6 facilitates their resolution.


Journal of Biological Chemistry | 2012

During Replication Stress, Non-Smc Element 5 (Nse5) Is Required for Smc5/6 Protein Complex Functionality at Stalled Forks

Denise E. Bustard; Demis Menolfi; Kristian Jeppsson; Lindsay G. Ball; Sidney Carter Dewey; Katsuhiko Shirahige; Camilla Sjögren; Dana Branzei; Jennifer A. Cobb

Background: The Smc5/6 complex has six non-SMC elements, including Nse5. Results: Utilizing two mutants of NSE5, we separated Smc5 sumoylation from Smc5/6 complex function. Conclusion: Nse5 integrity is important for Smc5/6 complex stability, which in turn is essential for localization of the complex to stalled forks. Significance: Our results provide the first in vivo characterization of Nse5 for Smc5/6 complex function. The Smc5/6 complex belongs to the SMC (structural maintenance of chromosomes) family, which also includes cohesin and condensin. In Saccharomyces cerevisiae, the Smc5/6 complex contains six essential non-Smc elements, Nse1–6. Very little is known about how these additional elements contribute to complex function except for Nse2/Mms21, which is an E3 small ubiquitin-like modifier (SUMO) ligase important for Smc5 sumoylation. Characterization of two temperature-sensitive mutants, nse5-ts1 and nse5-ts2, demonstrated the importance of Nse5 within the Smc5/6 complex for its stability and functionality at forks during hydroxyurea-induced replication stress. Both NSE5 alleles showed a marked reduction in Smc5 sumoylation to levels lower than those observed with mms21-11, a mutant of Mms21 that is deficient in SUMO ligase activity. However, a phenotypic comparison of nse5-ts1 and nse5-ts2 revealed a separation of importance between Smc5 sumoylation and the function of the Smc5/6 complex during replication. Only cells carrying the nse5-ts1 allele exhibited defects such as dissociation of the replisome from stalled forks, formation of fork-associated homologous recombination intermediates, and hydroxyurea sensitivity that is additive with mms21-11. These defects are attributed to a failure in Smc5/6 localization to forks in nse5-ts1 cells. Overall, these data support the premise that Nse5 is important for vital interactions between components within the Smc5/6 complex, and for its functionality during replication stress.


PLOS Genetics | 2013

Inhibition of the Smc5/6 Complex during Meiosis Perturbs Joint Molecule Formation and Resolution without Significantly Changing Crossover or Non-crossover Levels

Ingrid Lilienthal; Takaharu Kanno; Camilla Sjögren

Meiosis is a specialized cell division used by diploid organisms to form haploid gametes for sexual reproduction. Central to this reductive division is repair of endogenous DNA double-strand breaks (DSBs) induced by the meiosis-specific enzyme Spo11. These DSBs are repaired in a process called homologous recombination using the sister chromatid or the homologous chromosome as a repair template, with the homolog being the preferred substrate during meiosis. Specific products of inter-homolog recombination, called crossovers, are essential for proper homolog segregation at the first meiotic nuclear division in budding yeast and mice. This study identifies an essential role for the conserved Structural Maintenance of Chromosomes (SMC) 5/6 protein complex during meiotic recombination in budding yeast. Meiosis-specific smc5/6 mutants experience a block in DNA segregation without hindering meiotic progression. Establishment and removal of meiotic sister chromatid cohesin are independent of functional Smc6 protein. smc6 mutants also have normal levels of DSB formation and repair. Eliminating DSBs rescues the segregation block in smc5/6 mutants, suggesting that the complex has a function during meiotic recombination. Accordingly, smc6 mutants accumulate high levels of recombination intermediates in the form of joint molecules. Many of these joint molecules are formed between sister chromatids, which is not normally observed in wild-type cells. The normal formation of crossovers in smc6 mutants supports the notion that mainly inter-sister joint molecule resolution is impaired. In addition, return-to-function studies indicate that the Smc5/6 complex performs its most important functions during joint molecule resolution without influencing crossover formation. These results suggest that the Smc5/6 complex aids primarily in the resolution of joint molecules formed outside of canonical inter-homolog pathways.


Critical Reviews in Biochemistry and Molecular Biology | 2012

The SMC complexes, DNA and chromosome topology: right or knot?

Sidney D. Carter; Camilla Sjögren

Topology is the study of geometric properties that are preserved during bending, twisting and stretching of objects. In the context of the genome, topology is discussed at two interconnected and overlapping levels. The first focuses the DNA double helix itself, and includes alterations such as those triggered by DNA interacting proteins, processes which require the separation of the two DNA strands and DNA knotting. The second level is centered on the higher order organization of DNA into chromosomes, as well as dynamic conformational changes that occur on a chromosomal scale. Here, we refer to the first level as “DNA topology”, the second as “chromosome topology”. Since their identification, evidences suggesting that the so called structural maintenance of chromosomes (SMC) protein complexes are central to the interplay between DNA and chromosome topology have accumulated. The SMC complexes regulate replication, segregation, repair and transcription, all processes which influence, and are influenced by, DNA and chromosome topology. This review focuses on the details of the relationship between the SMC complexes and topology. It also discusses the possibility that the SMC complexes are united by a capability to sense the geometrical chirality of DNA crossings.

Collaboration


Dive into the Camilla Sjögren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuki Katou

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge