Camille Lacroix
IFREMER
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Camille Lacroix.
Chemosphere | 2017
Ludovic Hermabessiere; Alexandre Dehaut; Ika Paul-Pont; Camille Lacroix; Ronan Jezequel; Philippe Soudant; Guillaume Duflos
Plastics debris, especially microplastics, have been found worldwide in all marine compartments. Much research has been carried out on adsorbed pollutants on plastic pieces and hydrophobic organic compounds (HOC) associated with microplastics. However, only a few studies have focused on plastic additives. These chemicals are incorporated into plastics from which they can leach out as most of them are not chemically bound. As a consequence of plastic accumulation and fragmentation in oceans, plastic additives could represent an increasing ecotoxicological risk for marine organisms. The present work reviewed the main class of plastic additives identified in the literature, their occurrence in the marine environment, as well as their effects on and transfers to marine organisms. This work identified polybrominated diphenyl ethers (PBDE), phthalates, nonylphenols (NP), bisphenol A (BPA) and antioxidants as the most common plastic additives found in marine environments. Moreover, transfer of these plastic additives to marine organisms has been demonstrated both in laboratory and field studies. Upcoming research focusing on the toxicity of microplastics should include these plastic additives as potential hazards for marine organisms, and a greater focus on the transport and fate of plastic additives is now required considering that these chemicals may easily leach out from plastics.
Marine Pollution Bulletin | 2014
Camille Lacroix; V. Coquillé; Julien Guyomarch; Michel Auffret; Dario Moraga
mRNA biomarkers are promising tools for environmental health assessment and reference genes are needed to perform relevant qPCR analyses in tissue samples of sentinel species. In the present study, potential reference genes and mRNA biomarkers were tested in the gills and digestive glands of native and caged mussels (Mytilus spp.) exposed to harbor pollution. Results highlighted the difficulty to find stable reference genes in wild, non-model species and suggested the use of normalization indices instead of single genes as they exhibit a higher stability. Several target genes were found differentially expressed between mussel groups, especially in gills where cyp32, π-gst and CuZn-sod mRNA levels could be biomarker candidates. Multivariate analyses confirmed the ability of mRNA levels to highlight site-effects and suggested the use of several combined markers instead of individual ones. These findings support the use of qPCR technology and mRNA levels as early-warning biomarkers in marine monitoring programs.
Aquatic Toxicology | 2015
Camille Lacroix; Gaëlle Richard; Catherine Seguineau; Julien Guyomarch; Dario Moraga; Michel Auffret
Brest harbor (Bay of Brest, Brittany, France) has a severe past of anthropogenic chemical contamination, but inputs tended to decrease, indicating a reassessment of its ecotoxicological status should be carried out. Here, native and caged mussels (Mytilus spp.) were used in combination to evaluate biological effects of chronic chemical contamination in Brest harbor. Polycyclic aromatic hydrocarbon (PAH) contamination was measured in mussel tissues as a proxy of harbor and urban pollution. Biochemical biomarkers of xenobiotic biotransformation, antioxidant defenses, generation of reducing equivalents, energy metabolism and oxidative damage were studied in both gills and digestive glands of native and caged mussels. In particular, activities of glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), NADP-dependent isocitrate dehydrogenase (IDP), pyruvate kinase (PK) and phosphoenolpyruvate carboxykinase (PEPCK) were measured and lipid peroxidation was assessed by malondialdehyde (MDA) quantification. In addition, a condition index was calculated to assess the overall health of the mussels. Moderate PAH contamination was detected in digestive glands of both native and caged individuals from the exposed site. Modulations of biomarkers were detected in digestive glands of native harbor mussels indicating the presence of a chemical pressure. In particular, results suggested increased biotransformation (GST), antioxidant defenses (CAT), NADPH generation (IDP) and gluconeogenesis (PEPCK), which could represent a coordinated response against chemically-induced cellular stress. Lipid peroxidation assessment and condition index indicated an absence of acute stress in the same mussels suggesting metabolic changes could, at least partially, offset the negative effects of contamination. In caged mussels, only GR was found modulated compared to non-exposed mussels but significant differences in oxidative stress and energy-related biomarkers were observed compared to native harbor mussels. Overall, these results suggested mussels chronically exposed to contamination have set up metabolic adaptation, which may contribute to their survival in the moderately contaminated harbor of Brest. Whether these adaptive traits result from phenotypic plasticity or genetic adaptation needs to be further investigated.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2014
Sébastien Artigaud; Camille Lacroix; Vianney Pichereau; Jonathan Flye-Sainte-Marie
Coastal ecosystems are increasingly disturbed by the increase of mean sea surface temperature and expansion of hypoxic areas. The objectives of the present work were to describe and compare the respiratory responses to combined heat and hypoxia in two bivalve species (Pecten maximus and Mytilus spp.) living in two contrasted coastal habitats (subtidal and intertidal, respectively). Results were consistent with the vertical zonation of both species. Mytilus spp. seemed to cope better with a temperature increase than P. maximus, which was found to be outside of its optimal thermal window at 25°C. Concerning respiratory responses to hypoxia at a given temperature, P. maximus displayed greater oxyregulation capacity that was maintained over a larger range of O2 levels, as compared to Mytilus spp. When acclimation temperatures increased, both species showed a decrease in their oxyregulation capacities alongside a reduction in aerobic performance, especially in P. maximus. The comparison between species suggests that subtidal species, such as P. maximus, might be more vulnerable to a combination of heat and hypoxia than intertidal species, such as Mytilus spp. Lastly, this study highlighted the utility of segmented linear models to estimate PcO2 and regulation percentages in marine organisms exposed to hypoxia.
PeerJ | 2015
Sébastien Artigaud; Camille Lacroix; Joëlle Richard; Jonathan Flye-Sainte-Marie; Luca Bargelloni; Vianney Pichereau
Hypoxia and hyperthermia are two connected consequences of the ongoing global change and constitute major threats for coastal marine organisms. In the present study, we used a proteomic approach to characterize the changes induced by hypoxia in the great scallop, Pecten maximus, subjected to three different temperatures (10 °C, 18 °C and 25 °C). We did not observe any significant change induced by hypoxia in animals acclimated at 10 °C. At 18 °C and 25 °C, 16 and 11 protein spots were differentially accumulated between normoxia and hypoxia, respectively. Moreover, biochemical data (octopine dehydrogenase activity and arginine assays) suggest that animals grown at 25 °C switched their metabolism towards anaerobic metabolism when exposed to both normoxia and hypoxia, suggesting that this temperature is out of the scallops’ optimal thermal window. The 11 proteins identified with high confidence by mass spectrometry are involved in protein modifications and signaling (e.g., CK2, TBK1), energy metabolism (e.g., ENO3) or cytoskeleton (GSN), giving insights into the thermal-dependent response of scallops to hypoxia.
Aquatic Toxicology | 2016
Carmen González-Fernández; Camille Lacroix; Ika Paul-Pont; Fabienne Le Grand; Marina Albentosa; Juan Bellas; Lucía Viñas; Juan A. Campillo; Hélène Hégaret; Philippe Soudant
The effect of the quality of two microalgal species on select biological and biochemical responses used as indicators of pollution were assessed. Mussels were conditioned for 6 weeks with the diatom Chaetoceros neogracile and the dinoflagellate Heterocapsa triquetra, chosen for being two clearly different types of primary production quality that differ in both biometric and biochemical characteristics. After dietary conditioning, the mussels were exposed to a polycyclic aromatic hydrocarbon, fluoranthene (FLU), for 1 week followed by 1 week of depuration. Results showed higher FLU accumulation in mussels fed on C. neogracile compared to those fed on H. triquetra. Concomitantly, a greater impact of this toxicant was observed in the biomarker responses of mussels fed on C. neogracile. These mussels showed an increase in the percentage of dead hemocytes, an activation of phagocytosis and ROS production of hemocytes after exposure. Some enzymatic activities also increased upon FLU exposure (superoxide dismutase -SOD-, catalase -CAT-, and glutathione reductases -GR-) and after depuration (glutathione-s-transferase -GST-). Results suggest that FLU exposure as well as food quality influence biomarker responses, with higher values of SOD, CAT and GR in non-exposed mussels fed on C. neogracile. In addition, upon exposure to the same FLU concentration, GR response varied according to dietary conditioning, suggesting that diet could act as a confounding factor in biomarker responses to pollution. Consequently, trophic conditions should be considered in marine pollution monitoring programs for a better interpretation of biomarker responses.
Environmental Pollution | 2018
Gaël Le Croizier; Camille Lacroix; Sébastien Artigaud; Stéphane Le Floch; Jean Raffray; Virginie Penicaud; Valérie Coquillé; Julien Autier; Marie-Laure Rouget; Nicolas Le Bayon; Raymond Laë; Luis Tito de Morais
Impacted marine environments lead to metal accumulation in edible marine fish, ultimately impairing human health. Nevertheless, metal accumulation is highly variable among marine fish species. In addition to ecological features, differences in bioaccumulation can be attributed to species-related physiological processes, which were investigated in two marine fish present in the Canary Current Large Marine Ecosystem (CCLME), where natural and anthropogenic metal exposure occurs. The European sea bass Dicentrarchus labrax and Senegalese sole Solea senegalensis were exposed for two months to two environmentally realistic dietary cadmium (Cd) doses before a depuration period. Organotropism (i.e., Cd repartition between organs) was studied in two storage compartments (the liver and muscle) and in an excretion vector (bile). To better understand the importance of physiological factors, the significance of hepatic metallothionein (MT) concentrations in accumulation and elimination kinetics in the two species was explored. Accumulation was faster in the sea bass muscle and liver, as inferred by earlier Cd increase and a higher accumulation rate. The elimination efficiency was also higher in the sea bass liver compared to sole, as highlighted by greater biliary excretion. In the liver, no induction of MT synthesis was attributed to metal exposure, challenging the relevance of using MT concentration as a biomarker of metal contamination. However, the basal MT pools were always greater in the liver of sea bass than in sole. This species-specific characteristic might have enhanced Cd biliary elimination and relocation to other organs such as muscle through the formation of more Cd/MT complexes. Thus, MT basal concentrations seem to play a key role in the variability observed in terms of metal concentrations in marine fish species.
Aquatic Toxicology | 2018
Kirstine Underbjerg Toxværd; Marina Pančić; Helene Overaa Eide; Janne E. Søreide; Camille Lacroix; Stéphane Le Floch; Morten Hjorth; Torkel Gissel Nielsen
A mesocosm study with oil in ice was performed in Van Mijenfjorden in Svalbard to compare effects of the oil spill responses (OSR) in situ burning, chemical dispersion and natural attenuation on the physiological performance of the Arctic copepod Calanus glacialis. Seawater collected from the mesocosms in winter and spring was used in laboratory incubation experiments, where effects on fecal pellet production, egg production and hatching success were investigated over a period of 14 days. Polycyclic aromatic hydrocarbon (PAH) seawater concentrations were lowest in winter. Brine channel formation in spring resulted in an 18 times increase in PAH concentration in the chemical dispersion treatment (1.67 μg L-1), and a 3 fold increase in the natural attenuation (0.36 μg L-1) and in situ burning (0.04 μg L-1) treatments. The physiological performance of female C. glacialis was unaffected by the PAH seawater concentrations. However, a higher mortality and deformity of nauplii was observed in the chemical dispersion treatment, highlighting the importance of considering secondary effects on next generation in future environmental risk assessment of OSR. This study shows that during the ice-covered period, chemical dispersion of oil spills leads to higher PAH exposure than natural attenuation and in situ burning, with potential consequences for recruitment of Arctic copepods.
Environmental Pollution | 2016
Ika Paul-Pont; Camille Lacroix; Carmen González Fernández; Hélène Hégaret; Christophe Lambert; Nelly Le Goïc; Laura Frère; Anne-Laure Cassone; Rossana Sussarellu; Caroline Fabioux; Julien Guyomarch; Marina Albentosa; Arnaud Huvet; Philippe Soudant
Journal of Chromatography A | 2014
Camille Lacroix; N. Le Cuff; J. Receveur; Dario Moraga; Michel Auffret; Julien Guyomarch