Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camille Petit is active.

Publication


Featured researches published by Camille Petit.


Journal of Materials Chemistry | 2009

Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption

Camille Petit; Mykola Seredych; Teresa J. Bandosz

Graphite oxide (GO) was synthesized using two different methods: one with sulfuric acid as part of the oxidizing mixture (Hummers–Offeman method) and another one without the sulfur-containing compound involved in the oxidation process (Brodie method). They were both tested for ammonia adsorption in dynamic conditions, at ambient temperature, and characterized before and after exposure to ammonia by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, potentiometric titration, energy-dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS) and elemental analysis. Analyses of the initial materials showed that besides epoxy, hydroxyl and carboxylic groups, a significant amount of sulfur is incorporated as sulfonic group for GO prepared by the Hummers–Offeman method. The process of ammonia adsorption seems to be strongly related to the type of GO. For GO prepared by the Brodie method, ammonia is mainly retained via intercalation in the interlayer space of GO and by reaction with the carboxylic groups present at the edges of the graphene layers. On the contrary, when GO prepared by the Hummers method is used, the ways of retention are different: not only is the intercalation of ammonia observed but its reaction with the epoxy, carboxylic and sulfonic groups present is also observed. In particular, during the ammonia adsorption process, sulfonic groups are converted to sulfates in the presence of superoxide anions O2−*. These sulfates can then react with ammonia to form ammonium sulfates. For both GOs, an incorporation of a significant part of the ammonia adsorbed as amines in their structure is observed as a result of reactive adsorption.


Langmuir | 2010

Reactive adsorption of ammonia on Cu-based MOF/graphene composites.

Camille Petit; Barbara Mendoza; Teresa J. Bandosz

New composites based on HKUST-1 and graphene layers are tested for ammonia adsorption at room temperature in both dry and moist conditions. The materials are characterized by X-ray diffraction, FT-IR spectroscopy, adsorption of nitrogen, and thermal analyses. Unlike other MOF/GO composites reported in previous studies, these materials are water-stable. Ammonia adsorption capacities on the composites are higher than the ones calculated for the physical mixture of components, suggesting the presence of a synergetic effect between the MOF and graphene layers. The increased porosity and dispersive forces being the consequence of the presence of graphene layers are responsible for the enhanced adsorption. In addition to its retention via physical forces, ammonia is also adsorbed via binding to the copper sites in HKUST-1 and then, progressively, via reaction with the MOF component. This reactive adsorption is visible through two successive changes of the adsorbents color during the breakthrough tests. More ammonia is adsorbed in moist conditions than in dry conditions owing to its dissolution in a water film present in the pore system.


ChemPhysChem | 2010

Hydrogen Sulfide Adsorption on MOFs and MOF/Graphite Oxide Composites

Camille Petit; Barbara Mendoza; Teresa J. Bandosz

Composites of a copper-based metal-organic framework (MOF) and graphite oxide (GO) were tested for hydrogen sulfide removal at ambient conditions. In order to understand the mechanisms of adsorption, the initial and exhausted samples were analyzed by various techniques including X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analyses, and sorption of nitrogen. Compared to the parent materials, an enhancement in hydrogen sulfide adsorption was found. It was the result of physical adsorption of water and H(2)S in the pore space formed at the interface between the MOF units and the graphene layers where the dispersive forces are the strongest. Besides physisorption, reactive adsorption was found as the main mechanism of retention. H(2)S molecules bind to the copper centers of the MOF. They progressively react with the MOF units resulting in the formation of copper sulfide. This leads to the collapse of the MOF structure. Water enhances adsorption in the composites as it allows the dissolution of hydrogen sulfide.


Journal of Materials Chemistry | 2009

MOF–graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia

Camille Petit; Teresa J. Bandosz

Metal-organic framework (MOF-5)–graphite oxide (GO) composite was synthesized using a solvothermal synthesis route. The parent materials (MOF-5 and GO) and the nanocomposite were characterized using X-ray diffraction, SEM, TEM, FTIR and adsorption of nitrogen. They were also tested as adsorbents of ammonia in dynamic conditions. The composite material obtained had a unique layered texture with a preserved structure of MOF-5 and GO. When tested as ammonia adsorbent, the composite showed some synergy enhancing the adsorption capacity in comparison with the hypothetical physical mixture of the components. Although the removal capacity was high in the presence of moisture, water had a detrimental effect on the chemistry of materials and destroyed their porous framework. This caused ammonia retained on the surface to be progressively desorbed from the materials when the samples were purged with air.


Journal of Colloid and Interface Science | 2009

On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds

Teresa J. Bandosz; Camille Petit

Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH(3) adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Brønsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.


ACS Applied Materials & Interfaces | 2010

Reactive adsorption of NO2 on copper-based metal-organic framework and graphite oxide/metal-organic framework composites.

Benoit Levasseur; Camille Petit; Teresa J. Bandosz

Composites of a copper-based metal-organic framework (MOF) and graphite oxide (GO) were tested for NO2 adsorption and retention of NO in dry and moist conditions. The samples were analyzed before and after exposure to NO2 by thermal analysis, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction, and adsorption of nitrogen at -196 °C. In dry conditions, the composites exhibit an enhanced NO2 breakthrough capacity compared to MOF and GO separately. This improvement is linked to the increased porosity and the reactive adsorption of NO2 on copper, which leads to the formation of bidentate and monodentate nitrate. Even though less NO2 is adsorbed in moist conditions than in dry ones, the materials are more stable than in dry conditions and the NO retention is enhanced. Water in the challenge gas competes with NO2 to bind to copper, and thus, the number of reactive adsorption sites on which NO2 can be adsorbed/reacted decreases.


Langmuir | 2011

Toward Understanding Reactive Adsorption of Ammonia on Cu-MOF/Graphite Oxide Nanocomposites

Camille Petit; Liangliang Huang; Jacek Jagiello; Jeffrey Kenvin; Keith E. Gubbins; Teresa J. Bandosz

The adsorption of ammonia on HKUST-1 (a metal-organic framework, MOF) and HKUST-1/graphite oxide (GO) composites was investigated in two different experimental conditions. From the isotherms, the isosteric heats of adsorption were calculated from the Clausius-Clapeyron equation following the virial approach. The results on HKUST-1 were compared with those obtained using molecular simulation studies. All materials exhibit higher ammonia adsorption capacities than those reported in the literature. The ammonia adsorption on the composites is higher than that measured separately on the MOF component and on GO. The strong adsorption of ammonia caused by chemical interactions on different adsorption sites is evidenced by the trends in the isosteric heats of adsorption. The molecular simulations conducted on HKUST-1 support the trends observed experimentally. In particular, the strong chemisorption of ammonia on the metallic centers of HKUST-1 is confirmed. Nevertheless, higher adsorption capacities are predicted compared with the experimental results. This discrepancy is mainly assigned to the partial collapse of the MOF structure upon exposure to ammonia, which is not accounted for in the simulation study.


Langmuir | 2011

Effect of Graphite Features on the Properties of Metal–Organic Framework/Graphite Hybrid Materials Prepared Using an in Situ Process

Camille Petit; Barbara Mendoza; Deanna O’Donnell; Teresa J. Bandosz

Metal-organic framework (MOF)/graphite hybrid materials were prepared using an in situ process. Graphites with various chemical and physical features were used, and HKUST-1 was selected as the MOF component. The samples (parent materials and hybrid materials) were characterized by X-ray diffraction, nitrogen sorption, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Then they were tested as ammonia adsorbents in dynamic conditions. The results indicate that the functionalization of graphite is important to build the hybrid materials with synergistic properties. The lack of functional groups on graphite results in the formation of a simple physical mixture. Besides the surface chemistry of the graphitic component, the physical parameters (porosity and size of flakes) also seem to influence the formation of the hybrid materials. It is observed that the graphite particles disturb the formation of HKUST-1 and induce a different crystal morphology (more defects and increased surface roughness) than the one observed when MOF is formed in the absence of a substrate. The latter behavior causes less ammonia to be adsorbed on the hybrid materials than is expected for the simple physical mixture of HKUST-1 and graphite. The MOF structure collapses (in HKUST-1 and the hybrid materials) upon ammonia adsorption and leads to the formation of new species.


Journal of Colloid and Interface Science | 2008

Complexity of ammonia interactions on activated carbons modified with V2O5

Camille Petit; Teresa J. Bandosz

A micro/mesoporous wood-based activated carbon was modified with different loadings of vanadium pentoxide via incipient impregnation with ammonium vanadate solution followed by heating in nitrogen at 500 degrees C. The materials were used as adsorbents for ammonia. Both adsorption and desorption curves were recorded. The initial and exhausted samples were characterized by Fourier transform infrared spectroscopy (FTIR), potentiometric titration, thermal analysis and adsorption of nitrogen. An improvement in ammonia uptake compared to the virgin carbon was observed, and the adsorption capacity was found linearly dependent on the metal content. Water increases ammonia adsorption capacity via dissolution of the gas, but it also competes with ammonia because both of them are preferentially adsorbed on the same vanadium oxide sites (vanadyl oxygens). Even though an increase in the interactions strength between ammonia and the adsorbents surface has been reached compared to previous studies, some weakly adsorbed ammonia was still released from the surface during air purging.


Advanced Materials | 2009

MOF–Graphite Oxide Composites: Combining the Uniqueness of Graphene Layers and Metal–Organic Frameworks

Camille Petit; Teresa J. Bandosz

Collaboration


Dive into the Camille Petit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barbara Mendoza

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher J. Karwacki

Edgewood Chemical Biological Center

View shared research outputs
Top Co-Authors

Avatar

Gregory W. Peterson

Edgewood Chemical Biological Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob Burress

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

John J. Mahle

Edgewood Chemical Biological Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge