Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camilo Colaco is active.

Publication


Featured researches published by Camilo Colaco.


BioMed Research International | 2013

Heat Shock Proteins: Stimulators of Innate and Acquired Immunity

Camilo Colaco; Christopher R. Bailey; K. Barry Walker; James Keeble

Adjuvants were reintroduced into modern immunology as the dirty little secret of immunologists by Janeway and thus began the molecular definition of innate immunity. It is now clear that the binding of pathogen-associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs) on antigen presenting cells (APCs) activates the innate immune response and provides the host with a rapid mechanism for detecting infection by pathogens and initiates adaptive immunity. Ironically, in addition to advancing the basic science of immunology, Janeways revelation on induction of the adaptive system has also spurred an era of rational vaccine design that exploits PRRs. Thus, defined PAMPs that bind to known PRRs are being specifically coupled to antigens to improve their immunogenicity. However, while PAMPs efficiently activate the innate immune response, they do not mediate the capture of antigen that is required to elicit the specific responses of the acquired immune system. Heat shock proteins (HSPs) are molecular chaperones that are found complexed to client polypeptides and have been studied as potential cancer vaccines. In addition to binding PRRs and activating the innate immune response, HSPs have been shown to both induce the maturation of APCs and provide chaperoned polypeptides for specific triggering of the acquired immune response.


Immunology | 2013

Heat-shock proteins as dendritic cell-targeting vaccines - getting warmer

Shaun McNulty; Camilo Colaco; Lucy E. Blandford; Christopher R. Bailey; Selene Baschieri; Stephen Todryk

Heat‐shock proteins (hsp) provide a natural link between innate and adaptive immune responses by combining the ideal properties of antigen carriage (chaperoning), targeting and activation of antigen‐presenting cells (APC), including dendritic cells (DC). Targeting is achieved through binding of hsp to distinct cell surface receptors and is followed by antigen internalization, processing and presentation. An improved understanding of the interaction of hsp with DC has driven the development of numerous hsp‐containing vaccines, designed to deliver antigens directly to DC. Studies in mice have shown that for cancers, such vaccines generate impressive immune responses and protection from tumour challenge. However, translation to human use, as for many experimental immunotherapies, has been slow partly because of the need to perform trials in patients with advanced cancers, where demonstration of efficacy is challenging. Recently, the properties of hsp have been used for development of prophylactic vaccines against infectious diseases including tuberculosis and meningitis. These hsp‐based vaccines, in the form of pathogen‐derived hsp–antigen complexes, or recombinant hsp combined with selected antigens in vitro, offer an innovative approach against challenging diseases where broad antigen coverage is critical.


Current Molecular Medicine | 2007

Mycobacterial Heat Shock Proteins as Vaccines - A Model of Facilitated Antigen Presentation

K. Barry Walker; James Keeble; Camilo Colaco

Heat shock proteins (hsps) are a highly conserved family of proteins, first recognized by their upregulated expression in response to host exposure to raised temperatures. Further study has revealed that they have numerous functions in the cell, primarily as chaperones mediating both the correct folding of nascent polypeptide chains and the dissolution of aggregated protein complexes. The energy requirement for this chaperone activity is provided by the ATPase activity found in most families of hsps and thus the peptide binding capacity is controlled by ATP hydrolysis. The structural consequence of this is that hsps isolated in situ are found complexed to chaperoned peptides (hspCs). Much previous work has implicated hsps in the immune response to pathogens and recent studies have shown that the interaction of hsps with antigen presenting cells, such as dendritic cells (DCs), mediates the integration of the innate and acquired immune responses. This central role for hspCs in immunity is facilitated by their dual function in both innate immunity, with the induction of cytokines and the maturation of DCs mediated by the hsp component, and acquired immunity, with the trafficking of antigens chaperoned in hspCs for antigen presentation by the mature DCs.


Journal of Virology | 2011

Adjuvant-free immunization with hemagglutinin-Fc fusion proteins as an approach to influenza vaccines.

Silvia Loureiro; Junyuan Ren; Pongsathon Phapugrangkul; Camilo Colaco; Christopher R. Bailey; Holly Shelton; Eleonora Molesti; Nigel J. Temperton; Wendy S. Barclay; Ian M. Jones

ABSTRACT The hemagglutinins (HAs) of human H1 and H3 influenza viruses and avian H5 influenza virus were produced as recombinant fusion proteins with the human immunoglobulin Fc domain. Recombinant HA-human immunoglobulin Fc domain (HA-HuFc) proteins were secreted from baculovirus-infected insect cells as glycosylated oligomer HAs of the anticipated molecular mass, agglutinated red blood cells, were purified on protein A, and were used to immunize mice in the absence of adjuvant. Immunogenicity was demonstrated for all subtypes, with the serum samples demonstrating subtype-specific hemagglutination inhibition, epitope specificity similar to that seen with virus infection, and neutralization. HuFc-tagged HAs are potential candidates for gene-to-vaccine approaches to influenza vaccination.


Vaccine | 2014

Heat shock protein complex vaccination induces protection against Helicobacter pylori without exogenous adjuvant.

Yok Teng Chionh; Arthi Arulmuruganar; Elena Venditti; Garrett Z. Ng; Jia-Xi Han; Claire Entwisle; Ching-Seng Ang; Camilo Colaco; Shaun McNulty; Philip Sutton

BACKGROUND The development of a vaccine against the human gastric pathogen Helicobacter pylori, the main causative agent of gastric adenocarcinoma, has been hampered by a number of issues, including the lack of a mucosal adjuvant for use in humans. Heat shock proteins (Hsp), highly conserved molecules expressed by both bacteria and mammalian species, possess a range of functions, including acting as chaperones for cellular proteins and the ability to activate innate immune receptors. Hsp complex (HspC) vaccines, containing Hsp derived from pathogenic bacteria, are immunostimulatory without addition of an exogenous adjuvant and can induce immunity against their chaperoned proteins. In this study we explored in mice the potential utility of a H. pylori HspC vaccine. RESULTS Vaccination with H. pylori HspC, by either the subcutaneous or respiratory mucosal route, induced a strong antibody response, elevated gastric cytokine levels and significant protection against subsequent live challenge with this pathogen. The level of protection induced by non-adjuvanted HspC vaccine was equivalent to that which resulted from vaccination with adjuvanted vaccines. While protection induced by immunisation with adjuvanted vaccines was associated with the development of a moderate to severe atrophic gastritis, that induced by H. pylori HspC only resulted in a mild inflammatory response, despite an increase in pro-inflammatory gastric cytokines. This reduced gastritis correlated with an increase in IL-10 and IL-13 levels in the gastric tissues of HspC vaccinated, H. pylori challenged mice. CONCLUSIONS H. pylori HspC vaccines have the potential to overcome some of the issues preventing the development of a human vaccine against this pathogen: HspC induced protective immunity against H. pylori without addition of an adjuvant and without the induction of a severe inflammatory response. However, complete protection was not obtained so further optimisation of this technology is needed if a human vaccine is to become a reality.


Journal of General Virology | 2009

Antibody limits in vivo murid herpesvirus-4 replication by IgG Fc receptor-dependent functions

Debbie E. Wright; Susanna Colaco; Camilo Colaco; Philip G. Stevenson

Antibody is an important antiviral defence. However, it is considered to do little against human gamma-herpesviruses, which establish predominantly latent infections regulated by T cells. One limitation on analysing these infections has been that latency is already well-established at clinical presentation; early infection may still be accessible to antibody. Here, using murid herpesvirus-4 (MuHV-4), we tested the impact of adoptively transferred antibody on early gamma-herpesvirus infection. Immune sera and neutralizing and non-neutralizing monoclonal antibodies (mAbs) all reduced acute lytic MuHV-4 replication. The reductions, even by neutralizing mAbs, were largely or completely dependent on host IgG Fc receptors. Therefore, passive antibody can blunt acute gamma-herpesvirus lytic infection, and does this principally by IgG Fc-dependent functions rather than by neutralization.


Human Vaccines & Immunotherapeutics | 2013

Autologous heat-shock protein vaccines

Camilo Colaco

An alternative explanation for the variable immunogenicity of Vitespan in clinical trials.


Vaccine | 2016

Heat shock protein complex vaccines induce antibodies against Neisseria meningitidis via a MyD88-independent mechanism.

Jia Xi Han; Garrett Z. Ng; Paola Cecchini; Yok Teng Chionh; Muhammad A. Saeed; Lisbeth M. Næss; Michael Joachim; Lucy E. Blandford; Richard A. Strugnell; Camilo Colaco; Philip Sutton

BACKGROUND Neisseria meningitidis are common colonizers of the human nasopharynx. In some circumstances, N. meningitidis becomes an opportunistic pathogen that invades tissues and causes meningitis. While a vaccine against a number of serogroups has been in effective use for many years, a vaccine against N. meningitidis group B has not yet been universally adopted. Bacterial heat shock protein complex (HSPC) vaccines comprise bacterial HSPs, purified with their chaperoned protein cargo. HSPC vaccines use the intrinsic adjuvant activity of their HSP, thought to act via Toll-like receptors (TLR), to induce an immune response against their cargo antigens. This study evaluated HSPC vaccines from N. meningitidis and the closely related commensal N. lactamica. RESULTS The protein composition of N. lactamica and N. meningitidis HSPCs were similar. Using human HEK293 cells we found that both HSPCs can induce an innate immune response via activation of TLR2. However, stimulation of TLR2 or TLR4 deficient murine splenocytes revealed that HSPCs can activate an innate immune response via multiple receptors. Vaccination of wildtype mice with the Neisseria HSPC induced a strong antibody response and a Th1-restricted T helper response. However, vaccination of mice deficient in the major TLR adaptor protein, MyD88, revealed that while the Th1 response to Neisseria HSPC requires MyD88, these vaccines unexpectedly induced an antigen-specific antibody response via a MyD88-independent mechanism. CONCLUSIONS N. lactamica and N. meningitidis HSPC vaccines both have potential utility for immunising against neisserial meningitis without the requirement for an exogenous adjuvant. The mode of action of these vaccines is highly complex, with HSPCs inducing immune responses via both MyD88-dependent and -independent mechanisms. In particular, these HSPC vaccines induced an antibody response without detectable T cell help.


Vaccine | 2017

Safety and immunogenicity of a novel multiple antigen pneumococcal vaccine in adults: A Phase 1 randomised clinical trial

Claire Entwisle; Sue Hill; Yin Pang; Michael Joachim; Ann McIlgorm; Camilo Colaco; David Goldblatt; Polly De Gorguette D'Argoeuves; Christopher R. Bailey

BACKGROUND Pneumococcal vaccines, combining multiple protein antigens, provide an alternative approach to currently marketed vaccines and may provide broader protection against pneumococcal disease. This trial evaluated the safety and immunogenicity of a novel vaccine candidate PnuBioVax in healthy young adults. METHODS In a Phase 1 double-blind study, 36 subjects (18-40 years) were randomised to receive 3 doses of PnuBioVax, 28 days apart, at one of three dose levels (50, 200, 500 µg) or placebo. Safety assessments included rates of emergent adverse events (AEs), injection site and systemic reactions. Immunogenicity endpoints included antibody titre against PnuBioVax and selected pneumococcal antigens. RESULTS In the placebo (n=9) and PnuBioVax (n=27) vaccinated subjects, there were 15 and 72, reported TEAEs, respectively. The majority of TEAEs were classified as common vaccine related AEs. There were no serious AEs. Common vaccine-related AEs occurred in 13 PnuBioVax (48%) and 2 placebo (22%) subjects and were all headaches (mild and moderate). Injection site reactions, mostly pain and tenderness (graded mild or moderate) were reported, in particular in the 200 µg and 500 µg PnuBioVax groups. There were no clinically significant changes in vital signs, ECG or blood chemistries. Subjects receiving the higher dose (200 and 500 μg) demonstrated a greater fold increase in IgG titre compared with the starting dose (50 μg) or the placebo group. The fold-increase was statistically significantly higher for 200 and 500µg PnuBioVax vs 50µg PnuBioVax and placebo at each timepoint post-immunisation. Most subjects receiving 200 and 500 µg PnuBioVax demonstrated a ≥2-fold increase in antibody against pneumolysin (Ply), Pneumococcal surface antigen (PsaA), PiaA (Pneumococcal iron acquisition), PspA (Pneumococcal surface protein A) and pilus proteins (RrgB and RrgA). CONCLUSIONS All dose levels were considered safe and well tolerated. There was a statistically significant increase in anti-PnuBioVax IgG titres at the 200 and 500 µg dose levels compared to 50 µg and placebo. TRIAL REGISTRATION NUMBER NCT02572635https://www.clinicaltrials.gov.


Human Vaccines & Immunotherapeutics | 2016

Activation of TRIF-dependent and independent immune responses by neisserial heat shock protein complex vaccines

Garrett Z. Ng; Jia-Xi Han; Camilo Colaco; Philip Sutton

ASBTRACT Heat shock protein Complex (HspC) vaccines are composed of Hsp purified from pathogenic bacteria along with their chaperoned protein cargo. Mouse studies have shown that HspC vaccines can induce a strong immune response against pathogenic bacteria without addition of an exogenous adjuvant. These vaccines are now entering clinical trials. It was predicted, but not previously tested, that HspC vaccines induce an immune response due to the activation of Toll-Like Receptors (TLR) by their component Hsp. Recently we tested this supposition and found that while this held true for the cellular response to neisserial HspC vaccines, strong antigen-specific antibody responses were surprisingly generated in mice deficient in MyD88 and thus most TLR signaling. This suggested an unidentified mechanism by which HspC vaccines induce an antibody response. We have now examined the antigenic profile of this response and found no evidence that this is due to the induction of T-independent antibodies. Examination of the MyD88-dependent signaling pathways involved in the cellular response to neisserial HspC showed that both TRIF-dependent and TRIF-independent pathways are activated, each resulting in the secretion of different cytokines. Hence the mechanism of action of HspC vaccines is clearly more complicated than originally thought.

Collaboration


Dive into the Camilo Colaco's collaboration.

Top Co-Authors

Avatar

Garrett Z. Ng

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Philip Sutton

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

David Goldblatt

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jia-Xi Han

Royal Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge