Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Camilo Lellis-Santos is active.

Publication


Featured researches published by Camilo Lellis-Santos.


Endocrinology | 2011

Absence of melatonin induces night-time hepatic insulin resistance and increased gluconeogenesis due to stimulation of nocturnal unfolded protein response

Tatiane C.A. Nogueira; Camilo Lellis-Santos; Daniel S. Jesus; Marco Taneda; Sandra Rodrigues; Fernanda Gaspar do Amaral; Ana Maria de Souza Lopes; José Cipolla-Neto; Silvana Bordin; Gabriel F. Anhê

It is known that the circadian rhythm in hepatic phosphoenolpyruvate carboxykinase expression (a limiting catalytic step of gluconeogenesis) and hepatic glucose production is maintained by both daily oscillation in autonomic inputs to the liver and night feeding behavior. However, increased glycemia and reduced melatonin (Mel) levels have been recently shown to coexist in diabetic patients at the end of the night period. In parallel, pinealectomy (PINX) is known to cause glucose intolerance with increased basal glycemia exclusively at the end of the night. The mechanisms that underlie this metabolic feature are not completely understood. Here, we demonstrate that PINX rats show night-time hepatic insulin resistance characterized by reduced insulin-stimulated RAC-α serine/threonine-protein kinase phosphorylation and increased phosphoenolpyruvate carboxykinase expression. In addition, PINX rats display increased conversion of pyruvate into glucose at the end of the night. The regulatory mechanism suggests the participation of unfolded protein response (UPR), because PINX induces night-time increase in activating transcription factor 6 expression and prompts a circadian fashion of immunoglobulin heavy chain-binding protein, activating transcription factor 4, and CCAAT/enhancer-binding protein-homologous protein expression with Zenith values at the dark period. PINX also caused a night-time increase in Tribble 3 and regulatory-associated protein of mammalian target of rapamycin; both were reduced in liver of PINX rats treated with Mel. Treatment of PINX rats with 4-phenyl butyric acid, an inhibitor of UPR, restored night-time hepatic insulin sensitivity and abrogated gluconeogenesis in PINX rats. Altogether, the present data show that a circadian oscillation of UPR occurs in the liver due to the absence of Mel. The nocturnal UPR activation is related with night-time hepatic insulin resistance and increased gluconeogenesis in PINX rats.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

UPR induces transient burst of apoptosis in islets of early lactating rats through reduced AKT phosphorylation via ATF4/CHOP stimulation of TRB3 expression.

Carla Rodrigues Bromati; Camilo Lellis-Santos; Tatiana S Yamanaka; Tatiane C.A. Nogueira; Mauro Leonelli; Luciana C. Caperuto; Renata Gorjão; Adriana R. Leite; Gabriel F. Anhê; Silvana Bordin

Endocrine pancreas from pregnant rats undergoes several adaptations that comprise increase in β-cell number, mass and insulin secretion, and reduction of apoptosis. Lactogens are the main hormones that account for these changes. Maternal pancreas, however, returns to a nonpregnant state just after the delivery. The precise mechanism by which this reversal occurs is not settled but, in spite of high lactogen levels, a transient increase in apoptosis was already reported as early as the 3rd day of lactation (L3). Our results revealed that maternal islets displayed a transient increase in DNA fragmentation at L3, in parallel with decreased RAC-alpha serine/threonine-protein kinase (AKT) phosphorylation (pAKT), a known prosurvival kinase. Wortmannin completely abolished the prosurvival action of prolactin (PRL) in cultured islets. Decreased pAKT in L3-islets correlated with increased Tribble 3 (TRB3) expression, a pseudokinase inhibitor of AKT. PERK and eIF2α phosphorylation transiently increased in islets from rats at the first day after delivery, followed by an increase in immunoglobulin heavy chain-binding protein (BiP), activating transcription factor 4 (ATF4), and C/EBP homologous protein (CHOP) in islets from L3 rats. Chromatin immunoprecipitation (ChIP) and Re-ChIP experiments further confirmed increased binding of the heterodimer ATF4/CHOP to the TRB3 promoter in L3 islets. Treatment with PBA, a chemical chaperone that inhibits UPR, restored pAKT levels and inhibited the increase in apoptosis found in L3. Moreover, PBA reduced CHOP and TRB3 levels in β-cell from L3 rats. Altogether, our study collects compelling evidence that UPR underlies the physiological and transient increase in β-cell apoptosis after delivery. The UPR is likely to counteract prosurvival actions of PRL by reducing pAKT through ATF4/CHOP-induced TRB3 expression.


PLOS ONE | 2013

Metformin attenuates the exacerbation of the allergic eosinophilic inflammation in high fat-diet-induced obesity in mice.

Marina C. Calixto; Letícia Lintomen; Diana M. André; Luiz O. Leiria; Danilo da Silva Ferreira; Camilo Lellis-Santos; Gabriel F. Anhê; Silvana Bordin; Richardt G. Landgraf; Edson Antunes

A positive relationship between obesity and asthma has been well documented. The AMP-activated protein kinase (AMPK) activator metformin reverses obesity-associated insulin resistance (IR) and inhibits different types of inflammatory responses. This study aimed to evaluate the effects of metformin on the exacerbation of allergic eosinophilic inflammation in obese mice. Male C57BL6/J mice were fed for 10 weeks with high-fat diet (HFD) to induce obesity. The cell infiltration and inflammatory markers in bronchoalveolar lavage (BAL) fluid and lung tissue were evaluated at 48 h after ovalbumin (OVA) challenge. HFD obese mice displayed peripheral IR that was fully reversed by metformin (300 mg/kg/day, two weeks). OVA-challenge resulted in higher influx of total cell and eosinophils in lung tissue of obese mice compared with lean group. As opposed, the cell number in BAL fluid of obese mice was reduced compared with lean group. Metformin significantly reduced the tissue eosinophil infiltration and prevented the reduction of cell counts in BAL fluid. In obese mice, greater levels of eotaxin, TNF-α and NOx, together with increased iNOS protein expression were observed, all of which were normalized by metformin. In addition, metformin nearly abrogated the binding of NF-κB subunit p65 to the iNOS promoter gene in lung tissue of obese mice. Lower levels of phosphorylated AMPK and its downstream target acetyl CoA carboxylase (ACC) were found in lung tissue of obese mice, which were restored by metformin. In separate experiments, the selective iNOS inhibitor aminoguanidine (20 mg/kg, 3 weeks) and the anti-TNF-α mAb (2 mg/kg) significantly attenuated the aggravation of eosinophilic inflammation in obese mice. In conclusion, metformin inhibits the TNF-α-induced inflammatory signaling and NF-κB-mediated iNOS expression in lung tissue of obese mice. Metformin may be a good pharmacological strategy to control the asthma exacerbation in obese individuals.


European Journal of Pharmacology | 2012

Quercetin decreases inflammatory response and increases insulin action in skeletal muscle of ob/ob mice and in L6 myotubes

Gabriel F. Anhê; Maristela Mitiko Okamoto; Andrezza Kinote; Carolina Sollon; Camilo Lellis-Santos; Fernando F. Anhê; Guilherme A. Lima; Sandro M. Hirabara; Lício A. Velloso; Silvana Bordin; Ubiratan Fabres Machado

Quercetin is a potent anti-inflammatory flavonoid, but its capacity to modulate insulin sensitivity in obese insulin resistant conditions is unknown. This study investigated the effect of quercetin treatment upon insulin sensitivity of ob/ob mice and its potential molecular mechanisms. Obese ob/ob mice were treated with quercetin for 10 weeks, and L6 myotubes were treated with either palmitate or tumor necrosis factor-α (TNFα) plus quercetin. Cells and muscles were processed for analysis of glucose transporter 4 (GLUT4), TNFα and inducible nitric oxide synthase (iNOS) expression, and c-Jun N-terminal kinase (JNK) and inhibitor of nuclear factor-κB (NF-κB) kinase (IκK) phosphorylation. Myotubes were assayed for glucose uptake and NF-κB translocation. Chromatin immunoprecipitation assessed NF-κB binding to GLUT4 promoter. Quercetin treatment improved whole body insulin sensitivity by increasing GLUT4 expression and decreasing JNK phosphorylation, and TNFα and iNOS expression in skeletal muscle. Quercetin suppressed palmitate-induced upregulation of TNFα and iNOS and restored normal levels of GLUT4 in myotubes. In parallel, quercetin suppressed TNFα-induced reduction of glucose uptake in myotubes. Nuclear accumulation of NF-κB in myotubes and binding of NF-κB to GLUT4 promoter in muscles of ob/ob mice were also reduced by quercetin. We demonstrated that quercetin decreased the inflammatory status in skeletal muscle of obese mice and in L6 myotubes. This effect was followed by increased muscle GLUT4, with parallel improvement of insulin sensitivity. These results point out quercetin as a putative strategy to manage inflammatory-related insulin resistance.


PLOS ONE | 2012

Maternal Melatonin Programs the Daily Pattern of Energy Metabolism in Adult Offspring

Danilo da Silva Ferreira; Fernanda Gaspar do Amaral; Caroline Costa Mesquita; Ana Paula L. Barbosa; Camilo Lellis-Santos; Ariane O. Turati; Laila Santos; Carolina Sollon; Patrícia Rodrigues Lourenço Gomes; Juliana de Almeida Faria; José Cipolla-Neto; Silvana Bordin; Gabriel F. Anhê

Background Shift work was recently described as a factor that increases the risk of Type 2 diabetes mellitus. In addition, rats born to mothers subjected to a phase shift throughout pregnancy are glucose intolerant. However, the mechanism by which a phase shift transmits metabolic information to the offspring has not been determined. Among several endocrine secretions, phase shifts in the light/dark cycle were described as altering the circadian profile of melatonin production by the pineal gland. The present study addresses the importance of maternal melatonin for the metabolic programming of the offspring. Methodology/Principal Findings Female Wistar rats were submitted to SHAM surgery or pinealectomy (PINX). The PINX rats were divided into two groups and received either melatonin (PM) or vehicle. The SHAM, the PINX vehicle and the PM females were housed with male Wistar rats. Rats were allowed to mate and after weaning, the male and female offspring were subjected to a glucose tolerance test (GTT), a pyruvate tolerance test (PTT) and an insulin tolerance test (ITT). Pancreatic islets were isolated for insulin secretion, and insulin signaling was assessed in the liver and in the skeletal muscle by western blots. We found that male and female rats born to PINX mothers display glucose intolerance at the end of the light phase of the light/dark cycle, but not at the beginning. We further demonstrate that impaired glucose-stimulated insulin secretion and hepatic insulin resistance are mechanisms that may contribute to glucose intolerance in the offspring of PINX mothers. The metabolic programming described here occurs due to an absence of maternal melatonin because the offspring born to PINX mothers treated with melatonin were not glucose intolerant. Conclusions/Significance The present results support the novel concept that maternal melatonin is responsible for the programming of the daily pattern of energy metabolism in their offspring.


American Journal of Physiology-endocrinology and Metabolism | 2013

Melatonin acts through MT1/MT2 receptors to activate hypothalamic Akt and suppress hepatic gluconeogenesis in rats

Juliana de Almeida Faria; Andrezza Kinote; Letícia M. Ignacio-Souza; Thiago Matos de Araújo; Daniela S. Razolli; Diego L. Doneda; Lívia B. Paschoal; Camilo Lellis-Santos; Gisele L. Bertolini; Lício A. Velloso; Silvana Bordin; Gabriel F. Anhê

Melatonin can contribute to glucose homeostasis either by decreasing gluconeogenesis or by counteracting insulin resistance in distinct models of obesity. However, the precise mechanism through which melatonin controls glucose homeostasis is not completely understood. Male Wistar rats were administered an intracerebroventricular (icv) injection of melatonin and one of following: an icv injection of a phosphatidylinositol 3-kinase (PI3K) inhibitor, an icv injection of a melatonin receptor (MT) antagonist, or an intraperitoneal (ip) injection of a muscarinic receptor antagonist. Anesthetized rats were subjected to pyruvate tolerance test to estimate in vivo glucose clearance after pyruvate load and in situ liver perfusion to assess hepatic gluconeogenesis. The hypothalamus was removed to determine Akt phosphorylation. Melatonin injections in the central nervous system suppressed hepatic gluconeogenesis and increased hypothalamic Akt phosphorylation. These effects of melatonin were suppressed either by icv injections of PI3K inhibitors and MT antagonists and by ip injection of a muscarinic receptor antagonist. We conclude that melatonin activates hypothalamus-liver communication that may contribute to circadian adjustments of gluconeogenesis. These data further suggest a physiopathological relationship between the circadian disruptions in metabolism and reduced levels of melatonin found in type 2 diabetes patients.


Endocrinology | 2012

The Regulation of Rasd1 Expression by Glucocorticoids and Prolactin Controls Peripartum Maternal Insulin Secretion

Camilo Lellis-Santos; Luciano H Sakamoto; Carla Rodrigues Bromati; Tatiane C.A. Nogueira; Adriana R. Leite; Tatiana S Yamanaka; Andrezza Kinote; Gabriel F. Anhê; Silvana Bordin

The transition from gestation to lactation is characterized by a robust adaptation of maternal pancreatic β-cells. Consistent with the loss of β-cell mass, glucose-induced insulin secretion is down-regulated in the islets of early lactating dams. Extensive experimental evidence has demonstrated that the surge of prolactin is responsible for the morphofunctional remodeling of the maternal endocrine pancreas during pregnancy, but the precise molecular mechanisms by which this phenotype is rapidly reversed after delivery are not completely understood. This study investigated whether glucocorticoid-regulated expression of Rasd1/Dexras, a small inhibitory G protein, is involved in this physiological plasticity. Immunofluorescent staining demonstrated that Rasd1 is localized within pancreatic β-cells. Rasd1 expression in insulin-secreting cells was increased by dexamethasone and decreased by prolactin. In vivo data confirmed that Rasd1 expression is decreased in islets from pregnant rats and increased in islets from lactating mothers. Knockdown of Rasd1 abolished the inhibitory effects of dexamethasone on insulin secretion and the protein kinase A, protein kinase C, and ERK1/2 pathways. Chromatin immunoprecipitation experiments revealed that glucocorticoid receptor (GR) and signal transducer and activator of transcription 5b (STAT5b) cooperatively mediate glucocorticoid-induced Rasd1 expression in islets. Prolactin inhibited the stimulatory effect of GR/STAT5b complex on Rasd1 transcription. Overall, our data indicate that the stimulation of Rasd1 expression by glucocorticoid at the end of pregnancy reverses the increased insulin secretion that occurs during pregnancy. Prolactin negatively regulates this pathway by inhibiting GR/STAT5b transcriptional activity on the Rasd1 gene.


Food Research International | 2014

Frozen pulp extracts of camu-camu (Myrciaria dubia McVaugh) attenuate the hyperlipidemia and lipid peroxidation of Type 1 diabetic rats

Any Elisa de Souza Schmidt Gonçalves; Camilo Lellis-Santos; Rui Curi; Franco Maria Lajolo; Maria Inés Genovese

Several epidemiological and experimental studies demonstrate that modulation of inflammatory response and oxidative stress by natural phytochemicals is a promising strategy to prevent and treat many chronic inflammatory diseases. Camu-camu is an Amazonian fruit with a high content of antioxidants, especially phenolic compounds and vitamin C. In the present study we evaluated the in vivo effects of chronic ingestion of raw extracts derived from camu-camu (Myrciaria dubia McVaugh) frozen pulp on plasma lipid profile and oxidative stress in streptozotocin-induced diabetic rats. Oral administration of camu-camu raw extracts significantly increased plasma antioxidant activity, reduced triacylglycerol and total cholesterol and lipid peroxidation in the plasma of streptozotocin-induced diabetic rats. However, no effect was observed on glucose metabolism of diabetic rats, probably due to the severity of this model.


American Journal of Physiology-endocrinology and Metabolism | 2010

MKP-1 mediates glucocorticoid-induced ERK1/2 dephosphorylation and reduction in pancreatic β-cell proliferation in islets from early lactating mothers

José E. Nicoletti-Carvalho; Camilo Lellis-Santos; Tatiana S Yamanaka; Tatiane C.A. Nogueira; Luciana C. Caperuto; Adriana R. Leite; Gabriel F. Anhê; Silvana Bordin

Maternal pancreatic islets undergo a robust increase of mass and proliferation during pregnancy, which allows a compensation of gestational insulin resistance. Studies have described that this adaptation switches to a low proliferative status after the delivery. The mechanisms underlying this reversal are unknown, but the action of glucocorticoids (GCs) is believed to play an important role because GCs counteract the pregnancy-like effects of PRL on isolated pancreatic islets maintained in cell culture. Here, we demonstrate that ERK1/2 phosphorylation (phospho-ERK1/2) is increased in maternal rat islets isolated on the 19th day of pregnancy. Phospho-ERK1/2 status on the 3rd day after delivery (L3) rapidly turns to values lower than that found in virgin control rats (CTL). MKP-1, a protein phosphatase able to dephosphorylate ERK1/2, is increased in islets from L3 rats. Chromatin immunoprecipitation assay revealed that binding of glucocorticoid receptor (GR) to MKP-1 promoter is also increased in islets from L3 rats. In addition, dexamethasone (DEX) reduced phospho-ERK1/2 and increased MKP-1 expression in RINm5F and MIN-6 cells. Inhibition of transduction with cycloheximide and inhibition of phosphatases with orthovanadate efficiently blocked DEX-induced downregulation of phospho-ERK1/2. In addition, specific knockdown of MKP-1 with siRNA suppressed the downregulation of phospho-ERK1/2 and the reduction of proliferation induced by DEX. Altogether, our results indicate that downregulation of phospho-ERK1/2 is associated with reduction in proliferation found in islets of early lactating mothers. This mechanism is probably mediated by GC-induced MKP-1 expression.


Molecular Endocrinology | 2013

M-Protein Is Down-Regulated in Cardiac Hypertrophy Driven by Thyroid Hormone in Rats

Andrei Rozanski; Ana Paula Cremasco Takano; Patricia N. Kato; Antonio G. Soares; Camilo Lellis-Santos; Juliane C. Campos; Julio Cesar Batista Ferreira; Maria Luiza M. Barreto-Chaves; Anselmo S. Moriscot

Although it is well known that the thyroid hormone (T3) is an important positive regulator of cardiac function over a short term and that it also promotes deleterious effects over a long term, the molecular mechanisms for such effects are not yet well understood. Because most alterations in cardiac function are associated with changes in sarcomeric machinery, the present work was undertaken to find novel sarcomeric hot spots driven by T3 in the heart. A microarray analysis indicated that the M-band is a major hot spot, and the structural sarcomeric gene coding for the M-protein is severely down-regulated by T3. Real-time quantitative PCR-based measurements confirmed that T3 (1, 5, 50, and 100 physiological doses for 2 days) sharply decreased the M-protein gene and protein expression in vivo in a dose-dependent manner. Furthermore, the M-protein gene expression was elevated 3.4-fold in hypothyroid rats. Accordingly, T3 was able to rapidly and strongly reduce the M-protein gene expression in neonatal cardiomyocytes. Deletions at the M-protein promoter and bioinformatics approach suggested an area responsive to T3, which was confirmed by chromatin immunoprecipitation assay. Functional assays in cultured neonatal cardiomyocytes revealed that depletion of M-protein (by small interfering RNA) drives a severe decrease in speed of contraction. Interestingly, mRNA and protein levels of other M-band components, myomesin and embryonic-heart myomesin, were not altered by T3. We concluded that the M-protein expression is strongly and rapidly repressed by T3 in cardiomyocytes, which represents an important aspect for the basis of T3-dependent sarcomeric deleterious effects in the heart.

Collaboration


Dive into the Camilo Lellis-Santos's collaboration.

Top Co-Authors

Avatar

Silvana Bordin

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Gabriel F. Anhê

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrezza Kinote

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Carolina Sollon

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Fernanda Gaspar do Amaral

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lício A. Velloso

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge