Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cammie F. Lesser is active.

Publication


Featured researches published by Cammie F. Lesser.


The EMBO Journal | 2001

Expression of microbial virulence proteins in Saccharomyces cerevisiae models mammalian infection

Cammie F. Lesser; Samuel I. Miller

Bacterial virulence proteins that are translocated into eukaryotic cells were expressed in Saccharomyces cerevisiae to model human infection. The subcellular localization patterns of these proteins in yeast paralleled those previously observed during mammalian infection, including localization to the nucleus and plasma membrane. Localization of Salmonella SspA in yeast provided the first evidence that SspA interacts with actin in living cells. In many cases, expression of the bacterial virulence proteins conferred genetically exploitable growth phenotypes. In this way, Yersinia YopE toxicity was demonstrated to be linked to its Rho GTPase activating protein activity. YopE blocked polarization of the yeast cytoskeleton and cell cycle progression, while SspA altered polarity and inhibited depolymerization of the actin cytoskeleton. These activities are consistent with previously proposed or demonstrated effects on higher eukaryotes and provide new insights into the roles of these proteins in pathogenesis: SspA in directing formation of membrane ruffles and YopE in arresting cell division. Thus, study of bacterial virulence proteins in yeast is a powerful system to determine functions of these proteins, probe eukaryotic cellular processes and model mammalian infection.


PLOS Pathogens | 2007

Yeast Functional Genomic Screens Lead to Identification of a Role for a Bacterial Effector in Innate Immunity Regulation

Roger W Kramer; Naomi L Slagowski; Ngozi A Eze; Kara Sue Giddings; Monica F Morrison; Keri A. Siggers; Michael N. Starnbach; Cammie F. Lesser

Numerous bacterial pathogens manipulate host cell processes to promote infection and ultimately cause disease through the action of proteins that they directly inject into host cells. Identification of the targets and molecular mechanisms of action used by these bacterial effector proteins is critical to understanding pathogenesis. We have developed a systems biological approach using the yeast Saccharomyces cerevisiae that can expedite the identification of cellular processes targeted by bacterial effector proteins. We systematically screened the viable yeast haploid deletion strain collection for mutants hypersensitive to expression of the Shigella type III effector OspF. Statistical data mining of the results identified several cellular processes, including cell wall biogenesis, which when impaired by a deletion caused yeast to be hypersensitive to OspF expression. Microarray experiments revealed that OspF expression resulted in reversed regulation of genes regulated by the yeast cell wall integrity pathway. The yeast cell wall integrity pathway is a highly conserved mitogen-activated protein kinase (MAPK) signaling pathway, normally activated in response to cell wall perturbations. Together these results led us to hypothesize and subsequently demonstrate that OspF inhibited both yeast and mammalian MAPK signaling cascades. Furthermore, inhibition of MAPK signaling by OspF is associated with attenuation of the host innate immune response to Shigella infection in a mouse model. These studies demonstrate how yeast systems biology can facilitate functional characterization of pathogenic bacterial effector proteins.


PLOS Pathogens | 2008

GEF-H1 Mediated Control of NOD1 Dependent NF-κB Activation by Shigella Effectors

Atsuko Fukazawa; Carmen Alonso; Kiyotaka Kurachi; Sonal Gupta; Cammie F. Lesser; Beth A. McCormick; Hans-Christian Reinecker

Shigella flexneri has evolved the ability to modify host cell function with intracellular active effectors to overcome the intestinal barrier. The detection of these microbial effectors and the initiation of innate immune responses are critical for rapid mucosal defense activation. The guanine nucleotide exchange factor H1 (GEF-H1) mediates RhoA activation required for cell invasion by the enteroinvasive pathogen Shigella flexneri. Surprisingly, GEF-H1 is requisite for NF-κB activation in response to Shigella infection. GEF-H1 interacts with NOD1 and is required for RIP2 dependent NF-κB activation by H-Ala-D-γGlu-DAP (γTriDAP). GEF-H1 is essential for NF-κB activation by the Shigella effectors IpgB2 and OspB, which were found to signal in a NOD1 and RhoA Kinase (ROCK) dependent manner. Our results demonstrate that GEF-H1 is a critical component of cellular defenses forming an intracellular sensing system with NOD1 for the detection of microbial effectors during cell invasion by pathogens.


Clinical Infectious Diseases | 2003

Disseminated Sporotrichosis Associated with Treatment with Immunosuppressants and Tumor Necrosis Factor-α Antagonists

Geoffrey S. Gottlieb; Cammie F. Lesser; King K. Holmes; Anna Wald

We report a case of disseminated sporotrichosis in a 49-year-old man who was treated with multiple immunosuppressants, including tumor necrosis factor (TNF)-alpha antagonists (etanercept and infliximab), for presumed inflammation arthritis. This case illustrates the potential for infectious complications related to the use of cytotoxic immunosuppressants and anticytokine agents, such as TNF-alpha antagonists.


Cell Host & Microbe | 2008

The Yeast Saccharomyces cerevisiae: A Versatile Model System for the Identification and Characterization of Bacterial Virulence Proteins

Keri A. Siggers; Cammie F. Lesser

Microbial pathogens utilize complex secretion systems to deliver proteins into host cells. These effector proteins target and usurp host cell processes to promote infection and cause disease. While secretion systems are conserved, each pathogen delivers its own unique set of effectors. The identification and characterization of these effector proteins has been difficult, often limited by the lack of detectable signal sequences and functional redundancy. Model systems including yeast, worms, flies, and fish are being used to circumvent these issues. This technical review details the versatility and utility of yeast Saccharomyces cerevisiae as a system to identify and characterize bacterial effectors.


Journal of Bacteriology | 2011

Identification and characterization of ZapC: a stabilizer of the FtsZ-ring in Escherichia coli

Jorge Durand-Heredia; Helen H. Yu; Sacha De Carlo; Cammie F. Lesser; Anuradha Janakiraman

In Escherichia coli, spatiotemporal control of cell division occurs at the level of the assembly/disassembly process of the essential cytoskeletal protein FtsZ. A number of regulators interact with FtsZ and modulate the dynamics of the assembled FtsZ ring at the midcell division site. In this article, we report the identification of an FtsZ stabilizer, ZapC (Z-associated protein C), in a protein localization screen conducted with E. coli. ZapC colocalizes with FtsZ at midcell and interacts directly with FtsZ, as determined by a protein-protein interaction assay in yeast. Cells lacking or overexpressing ZapC are slightly elongated and have aberrant FtsZ ring morphologies indicative of a role for ZapC in FtsZ regulation. We also demonstrate the ability of purified ZapC to promote lateral bundling of FtsZ in a sedimentation reaction visualized by transmission electron microscopy. While ZapC lacks sequence similarity with other nonessential FtsZ regulators, ZapA and ZapB, all three Zap proteins appear to play an important role in FtsZ regulation during rapid growth. Taken together, our results suggest a key role for lateral bundling of the midcell FtsZ polymers in maintaining FtsZ ring stability during division.


Journal of Molecular Biology | 1986

Structural and regulatory divergence among site-specific recombination genes of lambdoid phage☆

John M. Leong; Simone E. Nunes-Düby; Allen B. Oser; Cammie F. Lesser; Philip Youderian; Miriam M. Susskind; Arthur Landy

The lambdoid bacteriophage phi 80 and P22 have site-specific recombination systems similar to that of lambda. Each of the three phage has a different insertion specificity, but structural analysis of their attachment sites suggests that the three recombination pathways share similar features. In this study, we have identified and sequenced the int and xis genes of phi 80 and P22. phi 80 int and xis were identified using a plasmid recombination assay in vivo, and the P22 genes were mapped using Tn1 insertion mutations. In all three phage, the site-specific recombination genes are located directly adjacent to the phage attachment site. Interestingly, the transcriptional orientation of the phi 80 int gene is opposite to that of lambda and P22 int, resulting in convergent transcription of phi 80 int and xis. Because of its transcriptional orientation, phi 80 int cannot be expressed by the major leftward promoter, PL, and the regulatory strategy of phi 80 integration and excision must differ significantly from that of lambda. The deduced amino acid sequences of the recombination proteins of the three systems show surprisingly little homology. Sequences homologous to the lambda PI promoter are more conserved than the protein-coding sequences. Nevertheless, the Int proteins are locally related in the C-terminal sequences, particularly for a stretch of some 25 amino acid residues that lie approximately 50 residues from the C terminus. The Xis proteins can be aligned at their N termini.


PLOS Pathogens | 2008

A Functional Genomic Yeast Screen to Identify Pathogenic Bacterial Proteins

Naomi L Slagowski; Roger W Kramer; Monica F Morrison; Joshua LaBaer; Cammie F. Lesser

Many bacterial pathogens promote infection and cause disease by directly injecting into host cells proteins that manipulate eukaryotic cellular processes. Identification of these translocated proteins is essential to understanding pathogenesis. Yet, their identification remains limited. This, in part, is due to their general sequence uniqueness, which confounds homology-based identification by comparative genomic methods. In addition, their absence often does not result in phenotypes in virulence assays limiting functional genetic screens. Translocated proteins have been observed to confer toxic phenotypes when expressed in the yeast Saccharomyces cerevisiae. This observation suggests that yeast growth inhibition can be used as an indicator of protein translocation in functional genomic screens. However, limited information is available regarding the behavior of non-translocated proteins in yeast. We developed a semi-automated quantitative assay to monitor the growth of hundreds of yeast strains in parallel. We observed that expression of half of the 19 Shigella translocated proteins tested but almost none of the 20 non-translocated Shigella proteins nor ∼1,000 Francisella tularensis proteins significantly inhibited yeast growth. Not only does this study establish that yeast growth inhibition is a sensitive and specific indicator of translocated proteins, but we also identified a new substrate of the Shigella type III secretion system (TTSS), IpaJ, previously missed by other experimental approaches. In those cases where the mechanisms of action of the translocated proteins are known, significant yeast growth inhibition correlated with the targeting of conserved cellular processes. By providing positive rather than negative indication of activity our assay complements existing approaches for identification of translocated proteins. In addition, because this assay only requires genomic DNA it is particularly valuable for studying pathogens that are difficult to genetically manipulate or dangerous to culture.


Infection and Immunity | 2010

The C-Terminal Tail of Yersinia pseudotuberculosis YopM Is Critical for Interacting with RSK1 and for Virulence

Melissa W. McCoy; Meghan L. Marre; Cammie F. Lesser; Joan Mecsas

ABSTRACT Yersinia spp. undermine the immune responses of infected animals by translocating Yops directly into host cells with a type III secretion system. YopM, a leucine-rich repeat protein, is a critical virulence factor in infection. YopM localizes to both the nucleus and the cytoplasm in cultured cells, interacts with mammalian p90 ribosomal S6 kinase 1 (RSK1), and causes a decrease in NK cell populations in spleens. Little is known about the molecular interaction between YopM and RSK1 and its significance in pathogenesis. We performed a systematic deletion analysis of YopM in Yersinia pseudotuberculosis to determine which regions are required for RSK1 interactions, nuclear localization, virulence, and changes in immune cell populations during infection of mice. Full-length YopM associated with RSK1 in at least two protein complexes in infected cells, and deletion of its C-terminal tail abrogated all RSK1 interactions. The C-terminal tail was required for tissue colonization, as yopM mutants that failed to interact with RSK1 were as defective for tissue colonization as was a ΔyopM mutant; however, nuclear localization of YopM was not dependent on its RSK1 interaction. Mutants expressing YopM proteins which do not interact with RSK1 caused more pathology than did the ΔyopM mutant, suggesting that there are other RSK1-independent functions of YopM. Histopathological and flow cytometric analyses of spleens showed that infection with wild-type Y. pseudotuberculosis caused an influx of neutrophils, while mice infected with yopM mutants had increased numbers of macrophages. Decreases in NK cells after Y. pseudotuberculosis infection did not correlate with YopM expression. In conclusion, the C terminus of YopM is essential for RSK1 interactions and for virulence.


Nature | 2008

The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth

Jin Huang; Cammie F. Lesser; Stephen Lory

Bacterial virulence determinants can be identified, according to the molecular Kochs postulates, if inactivation of a gene associated with a suspected virulence trait results in a loss in pathogenicity. This approach is commonly used with genetically tractable organisms. However, the current lack of tools for targeted gene disruptions in obligate intracellular microbial pathogens seriously hampers the identification of their virulence factors. Here we demonstrate an approach to studying potential virulence factors of genetically intractable organisms, such as Chlamydia. Heterologous expression of Chlamydia pneumoniae CopN in yeast and mammalian cells resulted in a cell cycle arrest, presumably owing to alterations in the microtubule cytoskeleton. A screen of a small molecule library identified two compounds that alleviated CopN-induced growth inhibition in yeast. These compounds interfered with C. pneumoniae replication in mammalian cells, presumably by ‘knocking out’ CopN function, revealing an essential role of CopN in the support of C. pneumoniae growth during infection. This work demonstrates the role of a specific chlamydial protein in virulence. The chemical biology approach described here can be used to identify virulence factors, and the reverse chemical genetic strategy can result in the identification of lead compounds for the development of novel therapeutics.

Collaboration


Dive into the Cammie F. Lesser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juan Du

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge