Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Campbell O. Webb is active.

Publication


Featured researches published by Campbell O. Webb.


Bioinformatics | 2008

Phylocom: software for the analysis of phylogenetic community structure and trait evolution.

Campbell O. Webb; David D. Ackerly; Steven W. Kembel

MOTIVATION The increasing availability of phylogenetic and trait data for communities of co-occurring species has created a need for software that integrates ecological and evolutionary analyses. Capabilities: Phylocom calculates numerous metrics of phylogenetic community structure and trait similarity within communities. Hypothesis testing is implemented using several null models. Within the same framework, it measures phylogenetic signal and correlated evolution for species traits. A range of utility functions allow community and phylogenetic data manipulation, tree and trait generation, and integration into scientific workflows. AVAILABILITY Open source at: http://phylodiversity.net/phylocom/.


The American Naturalist | 2000

Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees

Campbell O. Webb

Because of the correlation expected between the phylogenetic relatedness of two taxa and their net ecological similarity, a measure of the overall phylogenetic relatedness of a community of interacting organisms can be used to investigate the contemporary ecological processes that structure community composition. I describe two indices that use the number of nodes that separate taxa on a phylogeny as a measure of their phylogenetic relatedness. As an example of the use of these indices in community analysis, I compared the mean observed net relatedness of trees (≥10 cm diameter at breast height) in each of 28 plots (each 0.16 ha) in a Bornean rain forest with the net relatedness expected if species were drawn randomly from the species pool (of the 324 species in the 28 plots), using a supertree that I assembled from published sources. I found that the species in plots were more phylogenetically related than expected by chance, a result that was insensitive to various modifications to the basic methodology. I tentatively infer that variation in habitat among plots causes ecologically more similar species to co‐occur within plots. Finally, I suggest a range of applications for phylogenetic relatedness measures in community analysis.


Evolution | 2005

A LIKELIHOOD FRAMEWORK FOR INFERRING THE EVOLUTION OF GEOGRAPHIC RANGE ON PHYLOGENETIC TREES

Richard H. Ree; Brian R. Moore; Campbell O. Webb; Michael J. Donoghue

Abstract At a time when historical biogeography appears to be again expanding its scope after a period of focusing primarily on discerning area relationships using cladograms, new inference methods are needed to bring more kinds of data to bear on questions about the geographic history of lineages. Here we describe a likelihood framework for inferring the evolution of geographic range on phylogenies that models lineage dispersal and local extinction in a set of discrete areas as stochastic events in continuous time. Unlike existing methods for estimating ancestral areas, such as dispersal‐vicariance analysis, this approach incorporates information on the timing of both lineage divergences and the availability of connections between areas (dispersal routes). Monte Carlo methods are used to estimate branch‐specific transition probabilities for geographic ranges, enabling the likelihood of the data (observed species distributions) to be evaluated for a given phylogeny and parameterized paleogeographic model. We demonstrate how the method can be used to address two biogeographic questions: What were the ancestral geographic ranges on a phylogenetic tree? How were those ancestral ranges affected by speciation and inherited by the daughter lineages at cladogenesis events? For illustration we use hypothetical examples and an analysis of a Northern Hemisphere plant clade (Cercis), comparing and contrasting inferences to those obtained from dispersal‐vicariance analysis. Although the particular model we implement is somewhat simplistic, the framework itself is flexible and could readily be modified to incorporate additional sources of information and also be extended to address other aspects of historical biogeography.


Ecological Applications | 2006

REGIONAL AND PHYLOGENETIC VARIATION OF WOOD DENSITY ACROSS 2456 NEOTROPICAL TREE SPECIES

Jérôme Chave; Helene C. Muller-Landau; Timothy R. Baker; Tomás A. Easdale; Hans ter Steege; Campbell O. Webb

Wood density is a crucial variable in carbon accounting programs of both secondary and old-growth tropical forests. It also is the best single descriptor of wood: it correlates with numerous morphological, mechanical, physiological, and ecological properties. To explore the extent to which wood density could be estimated for rare or poorly censused taxa, and possible sources of variation in this trait, we analyzed regional, taxonomic, and phylogenetic variation in wood density among 2456 tree species from Central and South America. Wood density varied over more than one order of magnitude across species, with an overall mean of 0.645 g/cm3. Our geographical analysis showed significant decreases in wood density with increasing altitude and significant differences among low-altitude geographical regions: wet forests of Central America and western Amazonia have significantly lower mean wood density than dry forests of Central and South America, eastern and central Amazonian forests, and the Atlantic forests of Brazil; and eastern Amazonian forests have lower wood densities than the dry forests and the Atlantic forest. A nested analysis of variance showed that 74% of the species-level wood density variation was explained at the genus level, 34% at the Angiosperm Phylogeny Group (APG) family level, and 19% at the APG order level. This indicates that genus-level means give reliable approximations of values of species, except in a few hypervariable genera. We also studied which evolutionary shifts in wood density occurred in the phylogeny of seed plants using a composite phylogenetic tree. Major changes were observed at deep nodes (Eurosid 1), and also in more recent divergences (for instance in the Rhamnoids, Simaroubaceae, and Anacardiaceae). Our unprecedented wood density data set yields consistent guidelines for estimating wood densities when species-level information is lacking and should significantly reduce error in Central and South American carbon accounting programs.


Molecular Ecology | 2009

Emerging patterns in the comparative analysis of phylogenetic community structure

Steven M. Vamosi; Stephen B. Heard; Jana C. Vamosi; Campbell O. Webb

The analysis of the phylogenetic structure of communities can help reveal contemporary ecological interactions, as well as link community ecology with biogeography and the study of character evolution. The number of studies employing this broad approach has increased to the point where comparison of their results can now be used to highlight successes and deficiencies in the approach, and to detect emerging patterns in community organization. We review studies of the phylogenetic structure of communities of different major taxa and trophic levels, across different spatial and phylogenetic scales, and using different metrics and null models. Twenty‐three of 39 studies (59%) find evidence for phylogenetic clustering in contemporary communities, but terrestrial and/or plant systems are heavily over‐represented among published studies. Experimental investigations, although uncommon at present, hold promise for unravelling mechanisms underlying the phylogenetic community structure patterns observed in community surveys. We discuss the relationship between metrics of phylogenetic clustering and tree balance and explore the various emerging biases in taxonomy and pitfalls of scale. Finally, we look beyond one‐dimensional metrics of phylogenetic structure towards multivariate descriptors that better capture the variety of ecological behaviours likely to be exhibited in communities of species with hundreds of millions of years of independent evolution.


The American Naturalist | 2007

Trait Evolution, Community Assembly, and the Phylogenetic Structure of Ecological Communities

Nathan J. B. Kraft; William K. Cornwell; Campbell O. Webb; David D. Ackerly

Taxa co‐occurring in communities often represent a nonrandom sample, in phenotypic or phylogenetic terms, of the regional species pool. While heuristic arguments have identified processes that create community phylogenetic patterns, further progress hinges on a more comprehensive understanding of the interactions between underlying ecological and evolutionary processes. We created a simulation framework to model trait evolution, assemble communities (via competition, habitat filtering, or neutral assembly), and test the phylogenetic pattern of the resulting communities. We found that phylogenetic community structure is greatest when traits are highly conserved and when multiple traits influence species membership in communities. Habitat filtering produces stronger phylogenetic structure when taxa with derived (as opposed to ancestral) traits are favored in the community. Nearest‐relative tests have greater power to detect patterns due to competition, while total community relatedness tests perform better with habitat filtering. The size of the local community relative to the regional pool strongly influences statistical power; in general, power increases with larger pool sizes for communities created by filtering but decreases for communities created by competition. Our results deepen our understanding of processes that contribute to phylogenetic community structure and provide guidance for the design and interpretation of empirical research.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Phylogenetic signal in plant pathogen–host range

Gregory S. Gilbert; Campbell O. Webb

What determines which plant species are susceptible to a given plant pathogen is poorly understood. Experimental inoculations with fungal pathogens of plant leaves in a tropical rain forest show that most fungal pathogens are polyphagous but that most plant species in a local community are resistant to any given pathogen. The likelihood that a pathogen can infect two plant species decreases continuously with phylogenetic distance between the plants, even to ancient evolutionary distances. This phylogenetic signal in host range allows us to predict the likely host range of plant pathogens in a local community, providing an important tool for plant ecology, design of agronomic systems, quarantine regulations in international trade, and risk analysis of biological control agents. In particular, the results suggest that the rate of spread and ecological impacts of a disease through a natural plant community will depend strongly on the phylogenetic structure of the community itself and that current regulatory approaches strongly underestimate the local risks of global movement of plant pathogens or their hosts.


Ecology | 2008

Are functional traits good predictors of demographic rates? Evidence from five neotropical forests

Lourens Poorter; S. J. Wright; Horacio Paz; David D. Ackerly; Richard Condit; Guillermo Ibarra-Manríquez; Kyle E. Harms; J. C. Licona; Miguel Martínez-Ramos; Susan J. Mazer; Helene C. Muller-Landau; M. Peña-Claros; Campbell O. Webb; Ian J. Wright

A central goal of comparative plant ecology is to understand how functional traits vary among species and to what extent this variation has adaptive value. Here we evaluate relationships between four functional traits (seed volume, specific leaf area, wood density, and adult stature) and two demographic attributes (diameter growth and tree mortality) for large trees of 240 tree species from five Neotropical forests. We evaluate how these key functional traits are related to survival and growth and whether similar relationships between traits and demography hold across different tropical forests. There was a tendency for a trade-off between growth and survival across rain forest tree species. Wood density, seed volume, and adult stature were significant predictors of growth and/or mortality. Both growth and mortality rates declined with an increase in wood density. This is consistent with greater construction costs and greater resistance to stem damage for denser wood. Growth and mortality rates also declined as seed volume increased. This is consistent with an adaptive syndrome in which species tolerant of low resource availability (in this case shade-tolerant species) have large seeds to establish successfully and low inherent growth and mortality rates. Growth increased and mortality decreased with an increase in adult stature, because taller species have a greater access to light and longer life spans. Specific leaf area was, surprisingly, only modestly informative for the performance of large trees and had ambiguous relationships with growth and survival. Single traits accounted for 9-55% of the interspecific variation in growth and mortality rates at individual sites. Significant correlations with demographic rates tended to be similar across forests and for phylogenetically independent contrasts as well as for cross-species analyses that treated each species as an independent observation. In combination, the morphological traits explained 41% of the variation in growth rate and 54% of the variation in mortality rate, with wood density being the best predictor of growth and mortality. Relationships between functional traits and demographic rates were statistically similar across a wide range of Neotropical forests. The consistency of these results strongly suggests that tropical rain forest species face similar trade-offs in different sites and converge on similar sets of solutions.


The American Naturalist | 2005

Explosive radiation of Malpighiales supports a mid-cretaceous origin of modern tropical rain forests.

Charles C. Davis; Campbell O. Webb; Kenneth J. Wurdack; Carlos A. Jaramillo; Michael J. Donoghue

Fossil data have been interpreted as indicating that Late Cretaceous tropical forests were open and dry adapted and that modern closed‐canopy rain forest did not originate until after the Cretaceous‐Tertiary (K/T) boundary. However, some mid‐Cretaceous leaf floras have been interpreted as rain forest. Molecular divergence‐time estimates within the clade Malpighiales, which constitute a large percentage of species in the shaded, shrub, and small tree layer in tropical rain forests worldwide, provide new tests of these hypotheses. We estimate that all 28 major lineages (i.e., traditionally recognized families) within this clade originated in tropical rain forest well before the Tertiary, mostly during the Albian and Cenomanian (112–94 Ma). Their rapid rise in the mid‐Cretaceous may have resulted from the origin of adaptations to survive and reproduce under a closed forest canopy. This pattern may also be paralleled by other similarly diverse lineages and supports fossil indications that closed‐canopy tropical rain forests existed well before the K/T boundary. This case illustrates that dated phylogenies can provide an important new source of evidence bearing on the timing of major environmental changes, which may be especially useful when fossil evidence is limited or controversial.


Ecology | 2006

NICHE EVOLUTION AND ADAPTIVE RADIATION: TESTING THE ORDER OF TRAIT DIVERGENCE

David D. Ackerly; Dylan W. Schwilk; Campbell O. Webb

In the course of an adaptive radiation, the evolution of niche parameters is of particular interest for understanding modes of speciation and the consequences for coexistence of related species within communities. We pose a general question: In the course of an evolutionary radiation, do traits related to within-community niche differences (alpha niche) evolve before or after differentiation of macrohabitat affinity or climatic tolerances (beta niche)? Here we introduce a new test to address this question, based on a modification of the method of independent contrasts. The divergence order test (DOT) is based on the average age of the nodes on a tree, weighted by the absolute magnitude of the contrast at each node for a particular trait. The comparison of these weighted averages reveals whether large divergences for one trait have occurred earlier or later in the course of diversification, relative to a second trait; significance is determined by bootstrapping from maximum-likelihood ancestral state reconstructions. The method is applied to the evolution of Ceanothus, a woody plant group in California, in which co-occurring species exhibit significant differences in a key leaf trait (specific leaf area) associated with contrasting physiological and life history strategies. Co-occurring species differ more for this trait than expected under a null model of community assembly. This alpha niche difference evolved early in the divergence of two major subclades within Ceanothus, whereas climatic distributions (beta niche traits) diversified later within each of the subclades. However, rapid evolution of climate parameters makes inferences of early divergence events highly uncertain, and differentiation of the beta niche might have taken place throughout the evolution of the group, without leaving a clear phylogenetic signal. Similar patterns observed in several plant and animal groups suggest that early divergence of alpha niche traits might be a common feature of niche evolution in many adaptive radiations.

Collaboration


Dive into the Campbell O. Webb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis Q. Brearley

Manchester Metropolitan University

View shared research outputs
Top Co-Authors

Avatar

Douglas Sheil

Center for International Forestry Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge