Camyla F. Farias
Federal University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Camyla F. Farias.
PLOS ONE | 2012
Mariana H. Massaoka; Alisson L. Matsuo; Carlos R. Figueiredo; Camyla F. Farias; Natalia Girola; Denise C. Arruda; Jorge Augusto Borin Scutti; Paulete Romoff; Oriana A. Fávero; Marcelo J. P. Ferreira; João Henrique G. Lago; Luiz R. Travassos
Background Malignant melanoma is a deadly type of metastatic skin cancer with increased incidence over the past 30 years. Despite the advanced knowledge on the biology, immunobiology and molecular genetics of melanoma, the alternatives of treatment are limited with poor prognosis. On clinical trials, natural products and among them redox-active quinones have been tested in the attempt to control the growth of cancer cells. Recently, we isolated jacaranone from Pentacalia desiderabilis, a benzoquinone derivative that showed a broad antitumor activity and protective anti-melanoma effect in a syngeneic model. The purified substance is active at micromolar concentrations, is not hemolytic, and is not toxic in naïve mice. Methodology/Principal Findings The jacaranone antitumor activity was shown against several human cancer cell lines in vitro. Moreover, the induction of apoptosis in murine melanoma cells and jacaranone antitumor activity in vivo, in a melanoma experimental model, were also shown. Jacaranone renders antiproliferative and proapoptotic responses in tumor cells, by acting on Akt and p38 MAPK signaling pathways through generation of reactive oxygen species (ROS). The free radical scavenger N-acetyl-cysteine (NAC) was able to completely suppress cell death induced by jacaranone as it blocked Akt downregulation, p38 MAPK activation as well as upregulation of proapoptotic Bax. Notably, treatment of melanoma growing subcutaneously in mice with jacaranone significantly extended the mean survival times in a dose-dependent manner. Conclusions/Significance The results provide evidence for the mechanisms of action of jacaranone and emphasize the potential use of this quinone for the treatment of melanoma.
Peptides | 2015
Ricardo A. Azevedo; Carlos R. Figueiredo; Adilson Kleber Ferreira; Alisson L. Matsuo; Mariana H. Massaoka; Natalia Girola; Aline Vivian Vatti Auada; Camyla F. Farias; Kerly Fernanda Mesquita Pasqualoto; Cecilia Rodrigues; José Alexandre Marzagão Barbuto; Debora Levy; Sérgio Paulo Bydlowski; Paulo L. de Sá-Junior; Luiz R. Travassos; Ivo Lebrun
Mastoparan is an α-helical and amphipathic tetradecapeptide obtained from the venom of the wasp Vespula lewisii. This peptide exhibits a wide variety of biological effects, including antimicrobial activity, increased histamine release from mast cells, induction of a potent mitochondrial permeability transition and tumor cell cytotoxicity. Here, the effects of mastoparan in malignant melanoma were studied using the murine model of B16F10-Nex2 cells. In vitro, mastoparan caused melanoma cell death by the mitochondrial apoptosis pathway, as evidenced by the Annexin V-FITC/PI assay, loss of mitochondrial membrane potential (ΔΨm), generation of reactive oxygen species, DNA degradation and cell death signaling. Most importantly, mastoparan reduced the growth of subcutaneous melanoma in syngeneic mice and increased their survival. The present results show that mastoparan induced caspase-dependent apoptosis in melanoma cells through the intrinsic mitochondrial pathway protecting the mice against tumor development.
Archive | 2013
Mariana H. Massaoka; Alisson L. Matsuo; Jorge Augusto Borin Scutti; Denise C. Arruda; Aline N. Rabaça; Carlos R. Figueiredo; Camyla F. Farias; Natalia Girola; Luiz R. Travassos
Anti-tumor peptides have been identified in internal sequences of immunoglobulins, mainly the complementarity determining regions (CDRs), and also as sequences of signaling proteins. The in vitro effects of these peptides against several tumor cell lines involved different receptors and mechanisms mainly affecting the cell invasion, proliferation, cell cycle and apoptosis. Peptides also exerted in vivo protection using a melanoma subcutaneous and metastatic model, but this effect depended on the immune response. More specifically, peptides activated dendritic cells (DCs) and these cells exerted a potent anti-tumor effect. Experiments with DCs activated ex-vivo and transferred to tumor-challenged animals showed a protection identical to that of peptides alone suggesting that the latter activate DCs in vivo. A vaccine based on peptides is encouraged by the protection exerted by a signaling protein-derived peptide that caused arrest of a 200-mm3 growing subcutaneous melanoma, and by Ig-CDR readily synthesized, purified peptides that displayed anti-metastatic melanoma activities.
Respirology | 2017
Camyla F. Farias; Maria Marta Amorim; Michel Dracoulakis; Lilian Ballini Caetano; Ilka Lopes Santoro; Ana Luisa Godoy Fernandes
Determination of asthma phenotypes, particularly inflammatory phenotypes, helps guide treatment and management of this heterogeneous disease. Induced sputum cytology has been the gold standard for determination of inflammatory phenotypes, but sputum induction is fairly invasive and technically challenging. Blood and nasal lavage cytology have been suggested as substitutes, but have not been fully verified. The aim of this study is to determine the accuracy of blood and nasal lavage cytometry as indicators of inflammatory phenotypes in asthma.
Toxicology and Applied Pharmacology | 2016
Adilson Kleber Ferreira; Kerly Fernanda Mesquita Pasqualoto; Frank A.E. Kruyt; Fanny Palace-Berl; Ricardo Alexandre de Azevedo; Kely Medeiros Turra; Cecilia Rodrigues; Ana Carolina Franco Ferreira; Maria Alejandra Clavijo Salomon; Paulo Luiz de Sá Júnior; Camyla F. Farias; Carlos R. Figueiredo; Leoberto Costa Tavares; Jose Alexandre Marzagdo Barbuto; Salomão Dória Jorge
Benzofuroxan is an interesting ring system, which has shown a wide spectrum of biological responses against tumor cell lines. We investigated, herein, the antitumor effects of benzofuroxan derivatives (BFDs) in vitro and in a melanoma mouse model. Cytotoxic effects of twenty-two BFDs were determined by MTT assay. Effects of BFD-22 in apoptosis and cell proliferation were evaluated using Annexin V-FITC/PI and CFSE staining. In addition, the effects in the cell cycle were assessed. Flow cytometry, western blot, and fluorescence microscopy analysis were employed to investigate the apoptosis-related proteins and the BRAF signaling. Cell motility was also exploited through cell invasion and migration assays. Molecular docking approach was performed in order to verify the BFD-22 binding mode into the ATP catalytic site of BRAF kinase. Moreover, the BFD-22 antitumor effects were evaluated in a melanoma murine model using B16F10. BFD-22 was identified as a potential hit against melanoma cells. BFD-22 induced apoptosis and inhibited cell proliferation of B16F10 cells. BFD-22 has suppressed, indeed, the migratory and invasive behavior of B16F10 cells. Cyclin D1 and CDK4 expression were reduced leading to cell cycle arrest at G0/G1 phase. Of note, phosphorylation of BRAF at Ser338 was strongly down-regulated by BFD-22 in B16F10 cells. The accommodation/orientation into the binding site of BRAF was similar of BAY43-9006 (co-crystallized inhibitor of BRAF, sorafenib). Importantly, BFD-22 presented in vivo antimetastatic effects and showed better therapeutic efficacy than sorafenib and taxol. BFD-22 can be considered as a new lead compound and, then, can be helpful for the designing of novel drug candidates to treat melanoma.
Molecules | 2015
Vitor Ponci; Carlos R. Figueiredo; Mariana H. Massaoka; Camyla F. Farias; Alisson L. Matsuo; Patricia Sartorelli; João Henrique G. Lago
Nectandra megapotamica (Spreng.) Mez. (Lauraceae) is a well-known Brazilian medicinal plant that has been used in folk medicine to treat several diseases. In continuation of our ongoing efforts to discover new bioactive natural products from the Brazilian flora, this study describes the identification of cytotoxic compounds from the MeOH extract of N. megapotamica (Lauraceae) leaves using bioactivity-guided fractionation. This approach resulted in the isolation and characterization of eight tetrahydrofuran neolignans: calopeptin (1), machilin-G (2), machilin-I (3), aristolignin (4), nectandrin A (5), veraguensin (6), ganschisandrin (7), and galgravin (8). Different assays were conducted to evaluate their cytotoxic activities and to determine the possible mechanism(s) related to the activity displayed against human leukemia cells. The most active compounds 4, 5 and 8 gave IC50 values of 14.2 ± 0.7, 16.9 ± 0.8 and 16.5 ± 0.8 µg/mL, respectively, against human leukemia (HL-60) tumor cells. Moreover, these compounds induced specific apoptotic hallmarks, such as plasma membrane bleb formation, nuclear DNA condensation, specific chromatin fragmentation, phosphatidyl-serine exposure on the external leaflet of the plasma membrane, cleavage of PARP as well as mitochondrial damage, which as a whole could be related to the intrinsic apoptotic pathway.
Journal of the Brazilian Chemical Society | 2015
Diego Dinis Bou; Augusto Leonardo dos Santos; Carlos R. Figueiredo; Camyla F. Farias; Alisson L. Matsuo; Rodrigo O. S. Kitamura; Leila Gimenes; João Henrique G. Lago; Patricia Sartorelli
A new clerodane-type diterpene, named dinor casearin X, and four known casearins (A, B, G and J) were isolated from leaves of Casearia sylvestris (Salicaceae). These compounds were evaluated for cytotoxic activity against five human cancer cell lines (A2058, HL-60, HCT, MCF-7 and HeLa) as well as against a murine melanoma cell line (B16F10-Nex2). Among these compounds, dinor casearin X exhibited the highest cytotoxic activity against HL-60 cells with IC 50 of 0.51 ± 0.11 µg mL -1 , whereas casearin A exhibited the highest cytotoxic activity against HCT cells (IC50 1.84 ± 0.14 µg mL -1
BMC Cancer | 2015
Camyla F. Farias; Mariana H. Massaoka; Natalia Girola; Ricardo Alexandre de Azevedo; Adilson Kleber Ferreira; Salomão Dória Jorge; Leoberto Costa Tavares; Carlos R. Figueiredo; Luiz R. Travassos
BackgroundMalignant melanoma is an aggressive type of skin cancer, and despite recent advances in treatment, the survival rate of the metastatic form remains low. Nifuroxazide analogues are drugs based on the substitution of the nitrofuran group by benzofuroxan, in view of the pharmacophore similarity of the nitro group, improving bioavailability, with higher intrinsic activity and less toxicity. Benzofuroxan activity involves the intracellular production of free-radical species. In the present work, we evaluated the antitumor effects of different benzofuroxan derivatives in a murine melanoma model.MethodsB16F10-Nex2 melanoma cells were used to investigate the antitumor effects of Benzofuroxan derivatives in vitro and in a syngeneic melanoma model in C57Bl/6 mice. Cytotoxicity, morphological changes and reactive oxygen species (ROS) were assessed by a diphenyltetrasolium reagent, optical and fluorescence microscopy, respectively. Annexin-V binding and mitochondrial integrity were analyzed by flow cytometry. Western blotting and colorimetry identified cell signaling proteins.ResultsBenzofuroxan N-Br and N-I derivatives were active against murine and human tumor cell lines, exerting significant protection against metastatic melanoma in a syngeneic model. N-Br and N-I induce apoptosis in melanoma cells, evidenced by specific morphological changes, DNA condensation and degradation, and phosphatidylserine translocation in the plasma membrane. The intrinsic mitochondrial pathway in B16F10-Nex2 cells is suggested owing to reduced outer membrane potential in mitochondria, followed by caspase −9, −3 activation and cleavage of PARP. The cytotoxicity of N-Br and N-I in B16F10-Nex2 cells is mediated by the generation of ROS, inhibited by pre-incubation of the cells with N-acetylcysteine (NAC). The induction of ROS by N-Br and N-I resulted in the inhibition of AKT activation, an important molecule related to tumor cell survival, followed by upregulation of BIM.ConclusionWe conclude that N-Br and N-I are promising agents aiming at cancer treatment. They may be useful in melanoma therapy as inducers of intrinsic apoptosis and by exerting significant antitumor activity against metastatic melanoma, as presently shown in syngeneic mice.
FEBS Open Bio | 2016
Aline N. Rabaça; Denise C. Arruda; Carlos R. Figueiredo; Mariana H. Massaoka; Camyla F. Farias; Dayane Batista Tada; Vera Susana Carneiro Maia; Pedro Ismael da Silva Junior; Natalia Girola; Fernando Real; Renato A. Mortara; Luciano Polonelli; Luiz R. Travassos
Antibody‐derived peptides modulate functions of the immune system and are a source of anti‐infective and antitumor substances. Recent studies have shown that they comprise amino acid sequences of immunoglobulin complementarity‐determining regions, but also fragments of constant regions. VH CDR3 of murine mAb AC‐1001 displays antimetastatic activities using B16F10‐Nex2 murine melanoma cells in a syngeneic model. The peptide was cytotoxic in vitro in murine and human melanoma cells inducing reactive oxygen species (ROS) and apoptosis by the intrinsic pathway. Signs of autophagy were also suggested by the increased expression of LC3/LC3II and Beclin 1 and by ultrastructural evidence. AC‐1001 H3 bound to both G‐ and F‐actin and inhibited tumor cell migration. These results are important evidence of the antitumor activity of Ig CDR‐derived peptides.
Peptides | 2016
Natalia Girola; Alisson L. Matsuo; Carlos R. Figueiredo; Mariana H. Massaoka; Camyla F. Farias; Denise Costa Arruda; Ricardo A. Azevedo; Hugo P. Monteiro; Pedro T. Resende-Lara; Rodrigo L.O.R. Cunha; Luciano Polonelli; Luiz R. Travassos
The present work aims at investigating the mechanism of action of the Rb9 peptide, which contains the VHCDR 3 sequence of anti-sodium-dependent phosphate transport protein 2B (NaPi2B) monoclonal antibody RebMab200 and displayed antitumor properties. Short peptides corresponding to the hypervariable complementarity-determining regions (CDRs) of immunoglobulins have been associated with antimicrobial, antiviral, immunomodulatory and antitumor activities regardless of the specificity of the antibody. We have shown that the CDR derived peptide Rb9 induced substrate hyperadherence, inhibition of cell migration and matrix invasion in melanoma and other tumor cell lines. Rb9 also inhibited metastasis of murine melanoma in a syngeneic mouse model. We found that Rb9 binds to and interferes with Hsp90 chaperone activity causing attenuation of FAK-Src signaling and downregulation of active Rac1 in B16F10-Nex2 melanoma cells. The peptide also bound to an adhesion G-protein coupled receptor, triggering a concentration-dependent synthesis of cAMP and activation of PKA and VASP signaling as well as IP-3 dependent Ca2+ release. Hsp90 is highly expressed on the cell surface of melanoma cells, and synthetic agents that target Hsp90 are promising cancer therapeutic drugs. Based on their remarkable antitumor effects, the CDR-H3-derived peptides from RebMab200, and particularly the highly soluble and stable Rb9, are novel candidates to be further studied as potential antitumor drugs, selectively acting on cancer cell motility and invasion.