Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Canan Atilgan is active.

Publication


Featured researches published by Canan Atilgan.


PLOS Computational Biology | 2009

Perturbation-Response Scanning Reveals Ligand Entry-Exit Mechanisms of Ferric Binding Protein

Canan Atilgan; Ali Rana Atilgan

We study apo and holo forms of the bacterial ferric binding protein (FBP) which exhibits the so-called ferric transport dilemma: it uptakes iron from the host with remarkable affinity, yet releases it with ease in the cytoplasm for subsequent use. The observations fit the “conformational selection” model whereby the existence of a weakly populated, higher energy conformation that is stabilized in the presence of the ligand is proposed. We introduce a new tool that we term perturbation-response scanning (PRS) for the analysis of remote control strategies utilized. The approach relies on the systematic use of computational perturbation/response techniques based on linear response theory, by sequentially applying directed forces on single-residues along the chain and recording the resulting relative changes in the residue coordinates. We further obtain closed-form expressions for the magnitude and the directionality of the response. Using PRS, we study the ligand release mechanisms of FBP and support the findings by molecular dynamics simulations. We find that the residue-by-residue displacements between the apo and the holo forms, as determined from the X-ray structures, are faithfully reproduced by perturbations applied on the majority of the residues of the apo form. However, once the stabilizing ligand (Fe) is integrated to the system in holo FBP, perturbing only a few select residues successfully reproduces the experimental displacements. Thus, iron uptake by FBP is a favored process in the fluctuating environment of the protein, whereas iron release is controlled by mechanisms including chelation and allostery. The directional analysis that we implement in the PRS methodology implicates the latter mechanism by leading to a few distant, charged, and exposed loop residues. Upon perturbing these, irrespective of the direction of the operating forces, we find that the cap residues involved in iron release are made to operate coherently, facilitating release of the ion.


Biophysical Journal | 2010

Manipulation of Conformational Change in Proteins by Single-Residue Perturbations

Canan Atilgan; Z. N. Gerek; Sefika Banu Ozkan; Ali Rana Atilgan

Using the perturbation-response scanning (PRS) technique, we study a set of 25 proteins that display a variety of conformational motions upon ligand binding (e.g., shear, hinge, allosteric). In most cases, PRS determines single residues that may be manipulated to achieve the resulting conformational change. PRS reveals that for some proteins, binding-induced conformational change may be achieved through the perturbation of residues scattered throughout the protein, whereas in others, perturbation of specific residues confined to a highly specific region is necessary. Overlaps between the experimental and PRS-calculated atomic displacement vectors are usually more descriptive of the conformational change than those obtained from a modal analysis of elastic network models. Furthermore, the largest overlaps obtained by the latter approach do not always appear in the most collective modes; there are cases where more than one mode yields comparable overlap sizes. We show that success of the modal analysis depends on an absence of redundant paths in the protein. PRS thus demonstrates that several relevant modes can be induced simultaneously by perturbing a single select residue on the protein. We also illustrate the biological relevance of applying PRS to the GroEL, adenylate kinase, myosin, and kinesin structures in detail by showing that the residues whose perturbation leads to precise conformational changes usually correspond to those experimentally determined to be functionally important.


Annual review of biophysics | 2012

Network-Based Models as Tools Hinting at Nonevident Protein Functionality

Canan Atilgan; Osman Burak Okan; Ali Rana Atilgan

Network-based models of proteins are popular tools employed to determine dynamic features related to the folded structure. They encompass all topological and geometric computational approaches idealizing proteins as directly interacting nodes. Topology makes use of neighborhood information of residues, and geometry includes relative placement of neighbors. Coarse-grained approaches efficiently predict alternative conformations because of inherent collectivity in the protein structure. Such collectivity is moderated by topological characteristics that also tune neighborhood structure: That rich residues have richer neighbors secures robustness toward random loss of interactions/nodes due to environmental fluctuations/mutations. Geometry conveys the additional information of force balance to network models, establishing the local shape of the energy landscape. Here, residue and/or bond perturbations are critically evaluated to suggest new experiments, as network-based computational techniques prove useful in capturing domain movements and conformational shifts resulting from environmental alterations. Evolutionarily conserved residues are optimally connected, defining a subnetwork that may be utilized for further coarsening.


Journal of Chemical Physics | 2006

Complete mapping of the morphologies of some linear and graft fluorinated co-oligomers in an aprotic solvent by dissipative particle dynamics

Alimet Sema Özen; Unal Sen; Canan Atilgan

The mesoscopic morphologies of linear and graft fluorinated block copolymers of ABCBA and C:BA types, respectively, have been investigated by using dissipative particle dynamics method. Self-assembly in a selective solvent has been examined by the introduction of dimethylformamide as the choice of solvent. By comparing the solubility parameters calculated using atomistic simulations, fluorine-containing segments are found to be immiscible both with other segments of the polymer and with the solvent. Morphologies of the pure linear and graft copolymers were lamellar and cylindrical, respectively. Interfacial tension versus concentration curves have been used to explain the self-assembly behavior of copolymers in solution, as well as to predict the kinetic mechanisms responsible for this behavior.


PLOS Computational Biology | 2013

Designing Molecular Dynamics Simulations to Shift Populations of the Conformational States of Calmodulin

Ayse Ozlem Aykut; Ali Rana Atilgan; Canan Atilgan

We elucidate the mechanisms that lead to population shifts in the conformational states of calcium-loaded calmodulin (Ca2+-CaM). We design extensive molecular dynamics simulations to classify the effects that are responsible for adopting occupied conformations available in the ensemble of NMR structures. Electrostatic interactions amongst the different regions of the protein and with its vicinal water are herein mediated by lowering the ionic strength or the pH. Amino acid E31, which is one of the few charged residues whose ionization state is highly sensitive to pH differences in the physiological range, proves to be distinctive in its control of population shifts. E31A mutation at low ionic strength results in a distinct change from an extended to a compact Ca2+-CaM conformation within tens of nanoseconds, that otherwise occur on the time scales of microseconds. The kinked linker found in this particular compact form is observed in many of the target-bound forms of Ca2+-CaM, increasing the binding affinity. This mutation is unique in controlling C-lobe dynamics by affecting the fluctuations between the EF-hand motif helices. We also monitor the effect of the ionic strength on the conformational multiplicity of Ca2+-CaM. By lowering the ionic strength, the tendency of nonspecific anions in water to accumulate near the protein surface increases, especially in the vicinity of the linker. The change in the distribution of ions in the vicinal layer of water allows N- and C- lobes to span a wide variety of relative orientations that are otherwise not observed at physiological ionic strength. E31 protonation restores the conformations associated with physiological environmental conditions even at low ionic strength.


Journal of Chemical Physics | 2009

Surfactant formation efficiency of fluorocarbon-hydrocarbon oligomers in supercritical CO2.

Hatice Can; G Gökhan Kacar; Canan Atilgan

We use dissipative particle dynamics simulations to explore the phase behavior and solution properties of ABCBA type model surfactants in near-supercritical CO(2) environment. We present design guidelines for functional surfactants with tunable properties. The block co-oligomers used in this study are made up of a CO(2)-phobic block having ethyl propionate and nine different types of ethylene monomers, flanked on either side by eight repeat units of fluorinated CO(2)-philic blocks. The most promising design block co-oligomer in the series is that with the longest CO(2)-phobic group in the ethylene monomers. For this particular oligomer, we systematically analyze the effect of concentration on the self-assembly behavior. Spherical micelles form in the 5%-65% volume fraction range for this oligomer, with the highest number of spherical micelles occurring at 45% surfactant in CO(2). When the volume fraction of the surfactant is increased from 70% to 85%, cylindrical micelles occur. We further investigate the effect of the length of the solvophilic fluorinated segments on self-assembly and find that stable micelles occur in a window of 8-14 repeat units. We find that the most critical contribution to stability is due to the mixing free energy between the chain tails residing in the outer layers and the interpenetrating molecules.


Biophysical Journal | 2009

Nanosecond Motions in Proteins Impose Bounds on the Timescale Distributions of Local Dynamics

Osman Burak Okan; Ali Rana Atilgan; Canan Atilgan

We elucidate the physics of protein dynamical transition via 10-100-ns molecular dynamics simulations at temperatures spanning 160-300 K. By tracking the energy fluctuations, we show that the protein dynamical transition is marked by a crossover from nonstationary to stationary processes that underlie the dynamics of protein motions. A two-timescale function captures the nonexponential character of backbone structural relaxations. One timescale is attributed to the collective segmental motions and the other to local relaxations. The former is well defined by a single-exponential, nanosecond decay, operative at all temperatures. The latter is described by a set of processes that display a distribution of timescales. Although their average remains on the picosecond timescale, the distribution is markedly contracted at the onset of the transition. It is shown that the collective motions impose bounds on timescales spanned by local dynamical processes. The nonstationary character below the transition implicates the presence of a collection of substates whose interactions are restricted. At these temperatures, a wide distribution of local-motion timescales, extending beyond that of nanoseconds, is observed. At physiological temperatures, local motions are confined to timescales faster than nanoseconds. This relatively narrow window makes possible the appearance of multiple channels for the backbone dynamics to operate.


Proteins | 2010

How orientational order governs collectivity of folded proteins

Canan Atilgan; Osman Burak Okan; Ali Rana Atilgan

The past decade has witnessed the development and success of coarse‐grained network models of proteins for predicting many equilibrium properties related to collective modes of motion. Curiously, the results are usually robust toward the different cutoff distances used for constructing the residue networks from the knowledge of the experimental coordinates. In this study, we present a systematical study of network construction and their effect on the predicted properties. Probing bond orientational order around each residue, we propose a natural partitioning of the interactions into an essential and a residual set. In this picture, the robustness originates from the way with which new contacts are added, so that an unusual local orientational order builds up. These residual interactions have a vanishingly small effect on the force vectors on each residue. The stability of the overall force balance then translates into the Hessian as small shifts in the slow modes of motion and an invariance of the corresponding eigenvectors. We introduce a rescaled version of the Hessian matrix and point out a link between the matrix Frobenius norm based on spectral stability arguments and orientational local order. A recipe for the optimal choice of partitioning the interactions into essential and residual components is prescribed. Implications for the study of biologically relevant properties of proteins are discussed with specific examples. Proteins 2010.


Journal of Chemical Physics | 2011

Subtle pH differences trigger single residue motions for moderating conformations of calmodulin

Ali Rana Atilgan; Ayse Ozlem Aykut; Canan Atilgan

This study reveals the essence of ligand recognition mechanisms by which calmodulin (CaM) controls a variety of Ca(2+) signaling processes. We study eight forms of calcium-loaded CaM each with distinct conformational states. Reducing the structure to two degrees of freedom conveniently describes main features of the conformational changes of CaM via simultaneous twist-bend motions of the two lobes. We utilize perturbation-response scanning (PRS) technique, coupled with molecular dynamics simulations. PRS is based on linear response theory, comprising sequential application of directed forces on selected residues followed by recording the resulting protein coordinates. We analyze directional preferences of the perturbations and resulting conformational changes. Manipulation of a single residue reproduces the structural change more effectively than that of single/pairs/triplets of collective modes of motion. Our findings also give information on how the flexible linker acts as a transducer of binding information to distant parts of the protein. Furthermore, by perturbing residue E31 located in one of the EF hand motifs in a specific direction, it is possible to induce conformational change relevant to five target structures. Independently, using four different pK(a) calculation strategies, we find this particular residue to be the charged residue (out of a total of 52), whose ionization state is most sensitive to subtle pH variations in the physiological range. It is plausible that at relatively low pH, CaM structure is less flexible. By gaining charged states at specific sites at a pH value around 7, such as E31 found in the present study, local conformational changes in the protein will lead to shifts in the energy landscape, paving the way to other conformational states. These findings are in accordance with Fluorescence Resonance Energy Transfer (FRET) measured shifts in conformational distributions towards more compact forms with decreased pH. They also corroborate mutational studies and proteolysis results which point to the significant role of E31 in CaM dynamics.


Briefings in Functional Genomics | 2012

Local motifs in proteins combine to generate global functional moves

Ali Rana Atilgan; Canan Atilgan

Literature on the topological properties of folded proteins that has emerged as a field in its own right in the past decade is reviewed. Physics-based construction of coarse-grained models of proteins from knowledge of all-atom coordinates of the average structure is discussed. Once network is thus obtained with the node and link information, local motifs provide plethora of information on protein function. The hierarchical structure of the proteins manifested in the interrelations of local motifs is emphasized. Motifs are also related to modularity of the structure, and they quantify shifts in the landscapes upon conformational changes induced by, e.g. ligand binding. Redundancy emerges as a balance between local and global network descriptors and is related to the collectivity of the protein motions. Introducing weight on links followed by sequential removal of least cohesive contacts allows interactions in proteins to be represented as the superposition of essential and redundant sets. Lack of the former makes the network non-functional, while the latter ensures robust functioning under a wide range of perturbation scenarios.

Collaboration


Dive into the Canan Atilgan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge