Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cancan Huang is active.

Publication


Featured researches published by Cancan Huang.


Journal of the American Chemical Society | 2013

Single-Molecule Conductance of Functionalized Oligoynes: Length Dependence and Junction Evolution

Pavel Moreno-García; Murat Gulcur; David Zsolt Manrique; Thomas Pope; Wenjing Hong; Veerabhadrarao Kaliginedi; Cancan Huang; Andrei S. Batsanov; Martin R. Bryce; Colin J. Lambert; Thomas Wandlowski

We report a combined experimental and theoretical investigation of the length dependence and anchor group dependence of the electrical conductance of a series of oligoyne molecular wires in single-molecule junctions with gold contacts. Experimentally, we focus on the synthesis and properties of diaryloligoynes with n = 1, 2, and 4 triple bonds and the anchor dihydrobenzo[b]thiophene (BT). For comparison, we also explored the aurophilic anchor group cyano (CN), amino (NH2), thiol (SH), and 4-pyridyl (PY). Scanning tunneling microscopy break junction (STM-BJ) and mechanically controllable break junction (MCBJ) techniques are employed to investigate single-molecule conductance characteristics. The BT moiety is superior as compared to traditional anchoring groups investigated so far. BT-terminated oligoynes display a 100% probability of junction formation and possess conductance values which are the highest of the oligoynes studied and, moreover, are higher than other conjugated molecular wires of similar length. Density functional theory (DFT)-based calculations are reported for oligoynes with n = 1-4 triple bonds. Complete conductance traces and conductance distributions are computed for each family of molecules. The sliding of the anchor groups leads to oscillations in both the electrical conductance and the binding energies of the studied molecular wires. In agreement with experimental results, BT-terminated oligoynes are predicted to have a high electrical conductance. The experimental attenuation constants βH range between 1.7 nm(-1) (CN) and 3.2 nm(-1) (SH) and show the following trend: βH(CN) < βH(NH2) < βH(BT) < βH(PY) ≈ βH(SH). DFT-based calculations yield lower values, which range between 0.4 nm(-1) (CN) and 2.2 nm(-1) (PY).


Nature Communications | 2015

A quantum circuit rule for interference effects in single-molecule electrical junctions

David Zsolt Manrique; Cancan Huang; Masoud Baghernejad; Xiaotao Zhao; Oday A. Al-Owaedi; Hatef Sadeghi; Veerabhadrarao Kaliginedi; Wenjing Hong; Murat Gulcur; Thomas Wandlowski; Martin R. Bryce; Colin J. Lambert

A quantum circuit rule for combining quantum interference effects in the conductive properties of oligo(phenyleneethynylene) (OPE)-type molecules possessing three aromatic rings was investigated both experimentally and theoretically. Molecules were of the type X-Y-X, where X represents pyridyl anchors with para (p), meta (m) or ortho (o) connectivities and Y represents a phenyl ring with p and m connectivities. The conductances GXmX (GXpX) of molecules of the form X-m-X (X-p-X), with meta (para) connections in the central ring, were predominantly lower (higher), irrespective of the meta, para or ortho nature of the anchor groups X, demonstrating that conductance is dominated by the nature of quantum interference in the central ring Y. The single-molecule conductances were found to satisfy the quantum circuit rule Gppp/Gpmp=Gmpm/Gmmm. This demonstrates that the contribution to the conductance from the central ring is independent of the para versus meta nature of the anchor groups.


Journal of the American Chemical Society | 2014

Electrochemical control of single-molecule conductance by Fermi-level tuning and conjugation switching.

Masoud Baghernejad; Xiaotao Zhao; Kristian Baruël Ørnsø; Michael Füeg; Pavel Moreno-García; Alexander V. Rudnev; Veerabhadrarao Kaliginedi; Soma Vesztergom; Cancan Huang; Wenjing Hong; Peter Broekmann; Thomas Wandlowski; Kristian Sommer Thygesen; Martin R. Bryce

Controlling charge transport through a single molecule connected to metallic electrodes remains one of the most fundamental challenges of nanoelectronics. Here we use electrochemical gating to reversibly tune the conductance of two different organic molecules, both containing anthraquinone (AQ) centers, over >1 order of magnitude. For electrode potentials outside the redox-active region, the effect of the gate is simply to shift the molecular energy levels relative to the metal Fermi level. At the redox potential, the conductance changes abruptly as the AQ unit is oxidized/reduced with an accompanying change in the conjugation pattern between linear and cross conjugation. The most significant change in conductance is observed when the electron pathway connecting the two electrodes is via the AQ unit. This is consistent with the expected occurrence of destructive quantum interference in that case. The experimental results are supported by an excellent agreement with ab initio transport calculations.


Journal of the American Chemical Society | 2015

Searching the Hearts of Graphene-like Molecules for Simplicity, Sensitivity, and Logic

Sara Sangtarash; Cancan Huang; Hatef Sadeghi; Gleb Sorohhov; Juerg Hauser; Thomas Wandlowski; Wenjing Hong; Silvio Decurtins; Shi-Xia Liu; Colin J. Lambert

If quantum interference patterns in the hearts of polycyclic aromatic hydrocarbons could be isolated and manipulated, then a significant step toward realizing the potential of single-molecule electronics would be achieved. Here we demonstrate experimentally and theoretically that a simple, parameter-free, analytic theory of interference patterns evaluated at the mid-point of the HOMO-LUMO gap (referred to as M-functions) correctly predicts conductance ratios of molecules with pyrene, naphthalene, anthracene, anthanthrene, or azulene hearts. M-functions provide new design strategies for identifying molecules with phase-coherent logic functions and enhancing the sensitivity of molecular-scale interferometers.


Angewandte Chemie | 2015

Controlling Electrical Conductance through a π‐Conjugated Cruciform Molecule by Selective Anchoring to Gold Electrodes

Cancan Huang; Songjie Chen; Kristian Baruël Ørnsø; David Reber; Masoud Baghernejad; Yongchun Fu; Thomas Wandlowski; Silvio Decurtins; Wenjing Hong; Kristian Sommer Thygesen; Shi-Xia Liu

Tuning charge transport at the single-molecule level plays a crucial role in the construction of molecular electronic devices. Introduced herein is a promising and operationally simple approach to tune two distinct charge-transport pathways through a cruciform molecule. Upon in situ cleavage of triisopropylsilyl groups, complete conversion from one junction type to another is achieved with a conductance increase by more than one order of magnitude, and it is consistent with predictions from ab initio transport calculations. Although molecules are well known to conduct through different orbitals (either HOMO or LUMO), the present study represents the first experimental realization of switching between HOMO- and LUMO-dominated transport within the same molecule.


Nature Communications | 2015

Exploitation of desilylation chemistry in tailor-made functionalization on diverse surfaces.

Yongchun Fu; Songjie Chen; Akiyoshi Kuzume; Alexander V. Rudnev; Cancan Huang; Veerabhadrarao Kaliginedi; Masoud Baghernejad; Wenjing Hong; Thomas Wandlowski; Silvio Decurtins; Shi-Xia Liu

Interface engineering to attain a uniform and compact self-assembled monolayer at atomically flat surfaces plays a crucial role in the bottom-up fabrication of organic molecular devices. Here we report a promising and operationally simple approach for modification/functionalization not only at ultraflat single-crystal metal surfaces, M(111) (M=Au, Pt, Pd, Rh and Ir) but also at the highly oriented pyrolytic graphite surface, upon efficient in situ cleavage of trimethylsilyl end groups of the molecules. The obtained self-assembled monolayers are ultrastable within a wide potential window. The carbon–surface bonding on various substrates is confirmed by shell-isolated nanoparticle-enhanced Raman spectroscopy. Application of this strategy in tuning surface wettability is also demonstrated. The most valuable finding is that a combination of the desilylation with the click chemistry represents an efficient method for covalent and tailor-made functionalization of diverse surfaces.


Nature Communications | 2017

Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique

Cancan Huang; Martyn Jevric; Anders Borges; Stine T. Olsen; Joseph M. Hamill; Jueting Zheng; Yang Yang; Alexander V. Rudnev; Masoud Baghernejad; Peter Broekmann; Anne Ugleholdt Petersen; Thomas Wandlowski; Kurt V. Mikkelsen; Gemma C. Solomon; Mogens Brøndsted Nielsen; Wenjing Hong

Charge transport by tunnelling is one of the most ubiquitous elementary processes in nature. Small structural changes in a molecular junction can lead to significant difference in the single-molecule electronic properties, offering a tremendous opportunity to examine a reaction on the single-molecule scale by monitoring the conductance changes. Here, we explore the potential of the single-molecule break junction technique in the detection of photo-thermal reaction processes of a photochromic dihydroazulene/vinylheptafulvene system. Statistical analysis of the break junction experiments provides a quantitative approach for probing the reaction kinetics and reversibility, including the occurrence of isomerization during the reaction. The product ratios observed when switching the system in the junction does not follow those observed in solution studies (both experiment and theory), suggesting that the junction environment was perturbing the process significantly. This study opens the possibility of using nano-structured environments like molecular junctions to tailor product ratios in chemical reactions.


Angewandte Chemie | 2017

Radical-Enhanced Charge Transport in Single-Molecule Phenothiazine Electrical Junctions

Jun-Yang Liu; Xiaotao Zhao; Qusiy Al-Galiby; Xiaoyan Huang; Jueting Zheng; Ruihao Li; Cancan Huang; Yang Yang; Jia Shi; David Zsolt Manrique; Colin J. Lambert; Martin R. Bryce; Wenjing Hong

We studied the single-molecule conductance through an acid oxidant triggered phenothiazine (PTZ-) based radical junction using the mechanically controllable break junction technique. The electrical conductance of the radical state was enhanced by up to 200 times compared to the neutral state, with high stability lasting for at least two months and high junction formation probability at room-temperature. Theoretical studies revealed that the conductance increase is due to a significant decrease of the HOMO-LUMO gap and also the enhanced transmission close to the HOMO orbital when the radical forms. The large conductance enhancement induced by the formation of the stable PTZ radical molecule will lead to promising applications in single-molecule electronics and spintronics.


Chemical Society Reviews | 2015

Break junction under electrochemical gating: testbed for single-molecule electronics

Cancan Huang; Alexander V. Rudnev; Wenjing Hong; Thomas Wandlowski


Chemistry of Materials | 2013

Oligo(aryleneethynylene)s with Terminal Pyridyl Groups: Synthesis and Length Dependence of the Tunneling-to-Hopping Transition of Single-Molecule Conductances

Xiaotao Zhao; Cancan Huang; Murat Gulcur; Andrei S. Batsanov; Masoud Baghernejad; Wenjing Hong; Martin R. Bryce; Thomas Wandlowski

Collaboration


Dive into the Cancan Huang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge