Cancan Yi
Wuhan University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cancan Yi.
Entropy | 2017
Cancan Yi; Yong Lv; Mao Ge; Han Xiao; Xun Yu
Mechanical vibration signal mapped into a high-dimensional space tends to exhibit a special distribution and movement characteristics, which can further reveal the dynamic behavior of the original time series. As the most natural representation of high-dimensional data, tensor can preserve the intrinsic structure of the data to the maximum extent. Thus, the tensor decomposition algorithm has broad application prospects in signal processing. High-dimensional tensor can be obtained from a one-dimensional vibration signal by using phase space reconstruction, which is called the tensorization of data. As a new signal decomposition method, tensor-based singular spectrum algorithm (TSSA) fully combines the advantages of phase space reconstruction and tensor decomposition. However, TSSA has some problems, mainly in estimating the rank of tensor and selecting the optimal reconstruction tensor. In this paper, the improved TSSA algorithm based on convex-optimization and permutation entropy (PE) is proposed. Firstly, aiming to accurately estimate the rank of tensor decomposition, this paper presents a convex optimization algorithm using non-convex penalty functions based on singular value decomposition (SVD). Then, PE is employed to evaluate the desired tensor and improve the denoising performance. In order to verify the effectiveness of proposed algorithm, both numerical simulation and experimental bearing failure data are analyzed.
Shock and Vibration | 2016
Cancan Yi; Yong Lv; Zhang Dang
Variational mode decomposition (VMD) is a new method of signal adaptive decomposition. In the VMD framework, the vibration signal is decomposed into multiple mode components by Wiener filtering in Fourier domain, and the center frequency of each mode component is updated as the center of gravity of the mode’s power spectrum. Therefore, each decomposed mode is compact around a center pulsation and has a limited bandwidth. In view of the situation that the penalty parameter and the number of components affect the decomposition effect in VMD algorithm, a novel method of fault feature extraction based on the combination of VMD and particle swarm optimization (PSO) algorithm is proposed. In this paper, the numerical simulation and the measured fault signals of the rolling bearing experiment system are analyzed by the proposed method. The results indicate that the proposed method is much more robust to sampling and noise. Additionally, the proposed method has an advantage over the EMD in complicated signal decomposition and can be utilized as a potential method in extracting the faint fault information of rolling bearings compared with the common method of envelope spectrum analysis.
Journal of Analytical Atomic Spectrometry | 2017
Cancan Yi; Yong Lv; Han Xiao; Shan Tu
In quantitative laser-induced breakdown spectroscopy (LIBS) analysis, spectral signals are usually represented by the linear combination of characteristic peaks with useful spectral information and unwanted noise components. All of the existing regression analysis methods are related to a spectral data matrix, which is composed of certified samples with different spectral intensity. Therefore, spectral data matrix processing is critical for quantitative LIBS analysis. A prevalent assumption when constructing a matrix approximation is that the partially observed matrix is of low-rank. Moreover, the low-rank structure always reflects the useful information and is regarded as a powerful data preprocessing method. In this paper, a novel and quantitative LIBS analysis method based on a sparse low-rank matrix approximation via convex optimization is proposed. Based on the sparsity of the spectral signals, we present a convex objective function consisting of a data-fidelity term and two parameterized penalty terms. To improve the accuracy of the quantitative analysis, a new non-convex and non-separable penalty based on the Moreau envelope is proposed. Then, the alternating direction method of multipliers (ADMM) algorithm was utilized to solve the optimization problem. The proposed method was applied to the quantitative analysis of 23 high alloy steel samples. Both of the performances of the Partial Least Squares (PLS) and Support Vector Machine (SVM) regression models are improved by using the low-rank matrix approximation scheme, which proves the effectiveness of the proposed method.
Shock and Vibration | 2016
Wentao He; Cancan Yi; Yourong Li; Han Xiao
Wavelet analysis is a powerful tool for signal processing and mechanical equipment fault diagnosis due to the advantages of multiresolution analysis and excellent local characteristics in time-frequency domain. Wavelet total variation (WATV) was recently developed based on the traditional wavelet analysis method, which combines the advantages of wavelet-domain sparsity and total variation (TV) regularization. In order to guarantee the sparsity and the convexity of the total objective function, nonconvex penalty function is chosen as a new wavelet penalty function in WATV. The actual noise reduction effect of WATV method largely depends on the estimation of the noise signal variance. In this paper, an improved wavelet total variation (IWATV) denoising method was introduced. The local variance analysis on wavelet coefficients obtained from the wavelet decomposition of noisy signals is employed to estimate the noise variance so as to provide a scientific evaluation index. Through the analysis of the numerical simulation signal and real-word failure data, the results demonstrated that the IWATV method has obvious advantages over the traditional wavelet threshold denoising and total variation denoising method in the mechanical fault diagnose.
Entropy | 2018
Zhang Dang; Yong Lv; Yourong Li; Cancan Yi
Dynamic mode decomposition (DMD) is essentially a hybrid algorithm based on mode decomposition and singular value decomposition, and it inevitably inherits the drawbacks of these two algorithms, including the selection strategy of truncated rank order and wanted mode components. A novel denoising and feature extraction algorithm for multi-component coupled noisy mechanical signals is proposed based on the standard DMD algorithm, which provides a new method solving the two intractable problems above. Firstly, a sparse optimization method of non-convex penalty function is adopted to determine the optimal dimensionality reduction space in the process of DMD, obtaining a series of optimal DMD modes. Then, multiscale permutation entropy calculation is performed to calculate the complexity of each DMD mode. Modes corresponding to the noise components are discarded by threshold technology, and we reconstruct the modes whose entropies are smaller than a threshold to recover the signal. By applying the algorithm to rolling bearing simulation signals and comparing with the result of wavelet transform, the effectiveness of the proposed method can be verified. Finally, the proposed method is applied to the experimental rolling bearing signals. Results demonstrated that the proposed approach has a good application prospect in noise reduction and fault feature extraction.
Shock and Vibration | 2018
Sinian Hu; Han Xiao; Cancan Yi
The vibration signal of heavy gearbox has the nonlinear and nonstationary characteristic, which makes the gear fault diagnosis difficult. Moreover, the useful fault information is mainly focused on the high-frequency components of the raw signal, which also affects the fault feature extraction from vibration signal. For this reason, a novel signal processing method based on variational mode decomposition (VMD) and detrended fluctuation analysis (DFA) is proposed to diagnose the gear faults of heavy gearbox. Since high-frequency component contains more fault information, the raw vibration signal is decomposed several mode components by VMD, which can remove the low-frequency component to retain the high-frequency component. Moreover, the most sensitive mode component is selected in these high-frequency components by a maximal indicator, which is composed of kurtosis and correlation coefficient. The most sensitive mode component is calculated by DFA to obtain bi-logarithmic map, and the sliding windowing algorithm is employed to capture turning point of the bi-logarithmic map, thus extracting the fault feature of small time scale to identify gear faults. The effectiveness of the proposed method for fault diagnosis is validated by experimental data analysis, and the comparison results demonstrate that the recognition rate of gear faults condition have marked improvement by proposed method than the DFA of small time scale (STS-DFA) and EMD-DFA.
Sensors | 2018
Yong Lv; Houzhuang Zhang; Cancan Yi
As a multichannel signal processing method based on data-driven, multivariate empirical mode decomposition (MEMD) has attracted much attention due to its potential ability in self-adaption and multi-scale decomposition for multivariate data. Commonly, the uniform projection scheme on a hypersphere is used to estimate the local mean. However, the unbalanced data distribution in high-dimensional space often conflicts with the uniform samples and its performance is sensitive to the noise components. Considering the common fact that the vibration signal is generated by three sensors located in different measuring positions in the domain of the structural health monitoring for the key equipment, thus a novel trivariate empirical mode decomposition via convex optimization was proposed for rolling bearing condition identification in this paper. For the trivariate data matrix, the low-rank matrix approximation via convex optimization was firstly conducted to achieve the denoising. It is worthy to note that the non-convex penalty function as a regularization term is introduced to enhance the performance. Moreover, the non-uniform sample scheme was determined by applying singular value decomposition (SVD) to the obtained low-rank trivariate data and then the approach used in conventional MEMD algorithm was employed to estimate the local mean. Numerical examples of synthetic defined by the fault model and real data generated by the fault rolling bearing on the experimental bench are provided to demonstrate the fruitful applications of the proposed method.
Entropy | 2018
Mao Ge; Yong Lv; Cancan Yi; Yi Zhang; Xiangjun Chen
Gears are key components in rotation machinery and its fault vibration signals usually show strong nonlinear and non-stationary characteristics. It is not easy for classical time–frequency domain analysis methods to recognize different gear working conditions. Therefore, this paper presents a joint fault diagnosis scheme for gear fault classification via tensor nuclear norm canonical polyadic decomposition (TNNCPD) and multi-scale permutation entropy (MSPE). Firstly, the one-dimensional vibration data of different gear fault conditions is converted into a three-dimensional tensor data, and a new tensor canonical polyadic decomposition method based on nuclear norm and convex optimization called TNNCPD is proposed to extract the low rank component of the data, which represents the feature information of the measured signal. Then, the MSPE of the extracted feature information about different gear faults can be calculated as the feature vector in order to recognize fault conditions. Finally, this researched scheme is validated by practical gear vibration data of different fault conditions. The result demonstrates that the proposed scheme can effectively recognize different gear fault conditions.
Shock and Vibration | 2017
Yong Lv; Jie Luo; Cancan Yi
The vibration signal measured from the mechanical equipment is associated with the operation of key structure, such as the rolling bearing and gear. The effective signal processing method for early weak fault has attracted much attention and it is of vital importance in mechanical fault monitoring and diagnosis. The recently proposed atomic sparse decomposition algorithm is performed around overcomplete dictionary instead of the traditional signal analysis method using orthogonal basis operator. This algorithm has been proved to be effective in extracting useful components from complex signal by reducing influence of background noises. In this paper, an improved linear frequency-modulated (Ilfm) function as an atom is employed in the proposed enhanced orthogonal matching pursuit (EOMP) algorithm. Then, quantum genetic algorithm (QGA) with the OMP algorithm is integrated since the QGA can quickly obtain the global optimal solution of multiple parameters for rapidly and accurately extracting fault characteristic information from the vibration signal. The proposed method in this paper is superior to the traditional OMP algorithm in terms of accuracy and reducing the computation time through analyzing the simulation data and real world data. The experimental results based on the application of gear and bearing fault diagnosis indicate that it is more effective than traditional method in extracting fault characteristic information.
Measurement | 2017
Cancan Yi; Yong Lv; Zhang Dang; Han Xiao; Xun Yu