Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Candace S. Johnson is active.

Publication


Featured researches published by Candace S. Johnson.


Nature Reviews Cancer | 2007

Vitamin D signalling pathways in cancer: potential for anticancer therapeutics

Kristin K. Deeb; Donald L. Trump; Candace S. Johnson

Epidemiological studies indicate that vitamin D insufficiency could have an aetiological role in various human cancers. Preclinical research indicates that the active metabolite of vitamin D, 1α,25(OH)2D3, also known as calcitriol, or vitamin D analogues might have potential as anticancer agents because their administration has antiproliferative effects, can activate apoptotic pathways and inhibit angiogenesis. In addition, 1α,25(OH)2D3 potentiates the anticancer effects of many cytotoxic and antiproliferative anticancer agents. Here, we outline the epidemiological, preclinical and clinical studies that support the development of 1α,25(OH)2D3 and vitamin D analogues as preventative and therapeutic anticancer agents.


Urology | 1997

VITAMIN D INHIBITION OF PROSTATE ADENOCARCINOMA GROWTH AND METASTASIS IN THE DUNNING RAT PROSTATE MODEL SYSTEM

Robert H. Getzenberg; Benjamin W. Light; Paul E. Lapco; Badrinath R. Konety; Ajay K. Nangia; James S. Acierno; Rajiv Dhir; Zoya R. Shurin; Roger Day; Donald L. Trump; Candace S. Johnson

OBJECTIVES Risk factors for prostate cancer (PCa)-related mortality include old age, black race, and residence in northern latitudes. The objectives of this study are to examine the in vitro and in vivo effects of 1,25-dihydroxycholecalciferol (1,25-D3) and less-hypercalcemic analogues on the Dunning rat prostate adenocarcinoma model. METHODS To evaluate the effect of 1,25-D3 on PCa in vitro, we used the highly metastatic Mat-lylu (MLL) and moderately metastatic R3327-AT-2 (AT-2) Dunning prostate cell lines, and examined effects on growth, clonogenicity, differentiation, and cell cycle. In vivo analysis included examination of the effects of these compounds on tumor growth and metastasis. RESULTS Using both the 3-day MTT and 7-day clonogenic assay, 1,25-D3 demonstrated a growth inhibitory effect with a concentration for 50% inhibition (IC50) of approximately 20 microM for both MLL and AT-2. Cell cycle analysis of treated MLL cells (10 microM 1,25-D3 for 48 hours) had 25% more cells in the G0/G1 phase than did control cells. To examine the in vivo effect of 1,25-D3 and the less hypercalcemic vitamin D analogue, Ro25-6760 (or 6760), on MLL PCa growth and metastasis, tumors (5 x 10(5) cells) were implanted subcutaneously into the flank of Copenhagen rats on the same day that treatment was initiated with 1,25-D3 (1 microgram) or 6760 (1 or 5 micrograms); rats received treatment three times a week. After 3 weeks, 1,25-D3 and 6760 (5 micrograms dosing) resulted in an inhibition of tumor volume and a reduction in the number and size of lung metastases. CONCLUSIONS These preclinical studies demonstrate the profound in vitro, or in vivo, or both antiproliferative and differentiating effects of 1,25-D3 and 6760 on PCa and suggest that these drugs may have potential beneficial effects in the treatment of advanced PCa.


Oncogene | 2004

Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2.

Dong Xiao; Sunga Choi; Daniel E. Johnson; Victor Vogel; Candace S. Johnson; Donald L. Trump; Yong J. Lee

Garlic-derived organosulfides (OSCs) including diallyl trisulfide (DATS) are highly effective in affording protection against chemically induced cancer in animals. Evidence is also mounting to indicate that some naturally occurring OSCs can suppress proliferation of cancer cells by causing apoptosis, but the sequence of events leading to proapoptotic effect of OSCs is poorly defined. Using PC-3 and DU145 human prostate cancer cells as a model, we now demonstrate that DATS is a significantly more potent apoptosis inducer than diallyl sulfide (DAS) or diallyl disulfide (DADS). DATS-induced apoptosis in PC-3 cells was associated with phosphorylation of Bcl-2, reduced Bcl-2 : Bax interaction, and cleavage of procaspase-9 and -3. Bcl-2 overexpressing PC-3 cells were significantly more resistant to apoptosis induction by DATS compared with vector-transfected control cells. DATS treatment resulted in activation of extracellular-signal regulated kinase 1/2 (ERK1/2) and c-jun N-terminal kinase 1 (JNK1) and/or JNK2, but not p38 mitogen-activated protein kinase. Phosphorylation of Bcl-2 in DATS-treated PC-3 cells was fully blocked in the presence of JNK-specific inhibitor SP600125. Moreover, JNK inhibitor afforded significant protection against DATS-induced apoptosis in both cells. DATS-induced Bcl-2 phosphorylation and apoptosis were partially attenuated by pharmacological inhibition of ERK1/2 using PD98059 or U0126. Overexpression of catalase inhibited DATS-mediated activation of JNK1/2, but not ERK1/2, and apoptosis induction in DU145 cells suggesting involvement of hydrogen peroxide as a second messenger in DATS-induced apoptosis. In conclusion, our data point towards important roles for Bcl-2, JNK and ERK in DATS-induced apoptosis in human prostate cancer cells.


Bioinformatics | 2012

IMA: An R package for high-throughput analysis of Illumina’s 450K Infinium methylation data

Dan Wang; Li Yan; Qiang Hu; Lara Sucheston; Michael J. Higgins; Christine B. Ambrosone; Candace S. Johnson; Dominic J. Smiraglia; Song Liu

UNLABELLED The Illumina Infinium HumanMethylation450 BeadChip is a newly designed high-density microarray for quantifying the methylation level of over 450 000 CpG sites within human genome. Illumina Methylation Analyzer (IMA) is a computational package designed to automate the pipeline for exploratory analysis and summarization of site-level and region-level methylation changes in epigenetic studies utilizing the 450K DNA methylation microarray. The pipeline loads the data from Illumina platform and provides user-customized functions commonly required to perform exploratory methylation analysis for individual sites as well as annotated regions. AVAILABILITY IMA is implemented in the R language and is freely available from http://www.rforge.net/IMA.


Genes, Chromosomes and Cancer | 2008

Expression and mutational analysis of MET in human solid cancers

Patrick C. Ma; Maria Tretiakova; Alexander C. Mackinnon; Nithya Ramnath; Candace S. Johnson; Sascha Dietrich; Tanguy Y. Seiwert; James G. Christensen; Ramasamy Jagadeeswaran; Thomas Krausz; Everett E. Vokes; Aliya N. Husain; Ravi Salgia

MET receptor tyrosine kinase and its ligand hepatocyte growth factor (HGF) regulate a variety of cellular functions, many of which can be dysregulated in human cancers. Activated MET signaling can lead to cell motility and scattering, angiogenesis, proliferation, branching morphogenesis, invasion, and eventual metastasis. We performed systematic analysis of the expression of the MET receptor and its ligand HGF in tumor tissue microarrays (TMA) from human solid cancers. Standard immunohistochemistry (IHC) and a computerized automated scoring system were used. DNA sequencing for MET mutations in both nonkinase and kinase domains was also performed. MET was differentially overexpressed in human solid cancers. The ligand HGF was widely expressed in both tumors, primarily intratumoral, and nonmalignant tissues. The MET/HGF likely is functional and may be activated in autocrine fashion in vivo. MET and stem cell factor (SCF) were found to be positively stained in the bronchioalevolar junctions of lung tumors. A number of novel mutations of MET were identified, particularly in the extracellular semaphorin domain and the juxtamembrane domain. MET‐HGF pathway can be assayed in TMAs and is often overexpressed in a wide variety of human solid cancers. MET can be activated through overexpression, mutation, or autocrine signaling in malignant cells. Mutations in the nonkinase regions of MET might play an important role in tumorigenesis and tumor progression. MET would be an important therapeutic antitumor target to be inhibited, and in lung cancer, MET may represent a cancer early progenitor cell marker.


The Journal of Steroid Biochemistry and Molecular Biology | 2004

Anti-tumor activity of calcitriol: pre-clinical and clinical studies.

Donald L. Trump; Pamela A. Hershberger; Ronald J. Bernardi; Sharmilla Ahmed; Josephia R. Muindi; Marwan Fakih; Wei-Dong Yu; Candace S. Johnson

1,25-Dihydroxycholecalciferol (calcitriol) is recognized widely for its effects on bone and mineral metabolism. Epidemiological data suggest that low Vitamin D levels may play a role in the genesis of prostate cancer and perhaps other tumors. Calcitriol is a potent anti-proliferative agent in a wide variety of malignant cell types. In prostate, breast, colorectal, head/neck and lung cancer as well as lymphoma, leukemia and myeloma model systems calcitriol has significant anti-tumor activity in vitro and in vivo. Calcitriol effects are associated with an increase in G0/G1 arrest, induction of apoptosis and differentiation, modulation of expression of growth factor receptors. Glucocorticoids potentiate the anti-tumor effect of calcitriol and decrease calcitriol-induced hypercalcemia. Calcitriol potentiates the antitumor effects of many cytotoxic agents and inhibits motility and invasiveness of tumor cells and formation of new blood vessels. Phase I and II trials of calcitriol either alone or in combination with carboplatin, taxanes or dexamethasone have been initiated in patients with androgen dependent and independent prostate cancer and advanced cancer. Data indicate that high-dose calcitriol is feasible on an intermittent schedule, no dose-limiting toxicity has been encountered and optimal dose and schedule are being delineated. Clinical responses have been seen with the combination of high dose calcitriol+dexamethasone in androgen independent prostate cancer (AIPC) and apparent potentiation of the antitumor effects of docetaxel have been seen in AIPC. These results demonstrate that high intermittent doses of calcitriol can be administered to patients without toxicity, that the MTD is yet to be determined and that calcitriol has potential as an anti-cancer agent.


Endocrinology | 2002

Antiproliferative Effects of 1α,25-Dihydroxyvitamin D3 and Vitamin D Analogs on Tumor-Derived Endothelial Cells

Ronald J. Bernardi; Candace S. Johnson; Ruth A. Modzelewski; Donald L. Trump

Although there is abundant evidence that 1α,25-dihydroxyvitamin D3 [1,25-(OH)2D3] inhibits the growth of several cancer cell types, inhibition of angiogenesis may also play a role in mediating the antitumor effects of 1,25-(OH)2D3. We examined the ability of 1,25-(OH)2D3 to inhibit the growth of tumor-derived endothelial cells (TDECs) and normal endothelial cells and to modulate angiogenic signaling. 1,25-(OH)2D3 inhibited the growth of TDECs from two tumor models at nanomolar concentrations, but was less potent against normal aortic or yolk sac endothelial cells. The vitamin D analogs Ro-25-6760, EB1089, and ILX23-7553 were also potent inhibitors of TDEC proliferation. Furthermore, the combination of 1,25-(OH)2D3 and dexamethasone had greater activity than either agent alone. 1,25-(OH)2D3 increased vitamin D receptor and p27Kip1 protein levels in TDECs, whereas phospho-ERK1/2 and phospho-Akt levels were reduced. These changes were not observed in normal aortic endothelial cells. In squamous cell carcinom...


Cancer Journal | 2010

Vitamin D: Considerations in the Continued Development as an Agent for Cancer Prevention and Therapy

Donald L. Trump; Kristin K. Deeb; Candace S. Johnson

Considerable preclinical and epidemiologic data suggest that vitamin D may play a role in the pathogenesis, progression, and therapy for cancer. Numerous epidemiologic studies support the hypothesis that individuals with lower serum vitamin D levels have a higher risk of a number of cancers. Measures of vitamin D level in such studies include both surrogate estimates of vitamin D level (residence in more northern latitudes, history of activity, and sun exposure) as well as measured serum 25(OH) cholecalciferol levels. Perhaps, the most robust of these epidemiologic studies is that of Giovannucci et al, who developed and validated an estimate of serum 25(OH) cholecalciferol level and reported that among >40,000 individuals in the Health Professionals Study, an increase in 25(OH) cholecalciferol level of 62.5 ng/mL was associated with a reduction in the risk of head/neck, esophagus, pancreas cancers, and acute leukemia by >50%. Unfortunately, very limited data are available to indicate whether or not giving vitamin D supplements reduces the risk of cancer. Many preclinical studies indicate that exposing cancer cells, as well as vascular endothelial cells derived from tumors, to high concentrations of active metabolites of vitamin D halts progression through cell cycle, induces apoptosis and will slow or stop the growth of tumors in vivo. There are no data that one type of cancer is more or less susceptible to the effects of vitamin D. Vitamin D also potentiates the antitumor activity of a number of types of cytotoxic anticancer agents in in vivo preclinical models. Vitamin D analogues initiate signaling through a number of important pathways, but the pathway(s) essential to the antitumor activities of vitamin D are unclear. Clinical studies of vitamin D as an antitumor agent have been hampered by the lack of a suitable pharmaceutical preparation for clinical study. All commercially available formulations are inadequate because of the necessity to administer large numbers of caplets and the poor “bioavailability” of calcitriol (the most carefully studied analogue) at these high doses. Preclinical data suggest that high exposures to calcitriol are necessary for the antitumor effects. Clinical data do indicate that high doses of calcitriol (>100 mcg weekly, intravenously, and 0.15 &mgr;g /kg weekly, orally) can be given safely. The maximum tolerated dose of calcitriol is unclear. While a 250-patient trial in men with castration-resistant prostate cancer comparing docetaxel (36 mg/sqm weekly) ± calcitriol 0.15 &mgr;g/kg indicated that calcitriol was very safe may have reduced to death rate, an adequately powered (1000 patients) randomized study of weekly docetaxel + calcitriol versus q3 week docetaxel was negative. The limitations of this trial were the unequal chemotherapy arms compared in this study and the failure to use an optimal biologic dose or maximum-tolerated dose of calcitriol. In view of the substantial preclinical and epidemiologic data supporting the potential role of vitamin D in cancer, careful studies to evaluate the impact of vitamin D replacement on the frequency of cancer and the impact of an appropriate dose and schedule of calcitriol or other active vitamin D analogue on the treatment of established cancer are indicated.


Clinical Pharmacology & Therapeutics | 2002

Pharmacokinetics of high-dose oral calcitriol: results from a phase 1 trial of calcitriol and paclitaxel.

Josephia R. Muindi; Yibing Peng; Douglas M. Potter; Pamela A. Hershberger; Jil S. Tauch; Mary Jo Capozzoli; Merrill J. Egorin; Candace S. Johnson; Donald L. Trump

The data reported are from a trial designed to determine, in patients with advanced cancer, the maximum tolerated dose and pharmacokinetics of calcitriol when administered with paclitaxel, an agent whose antitumor activity in in vitro and in vivo studies has been shown to be enhanced by calcitriol. An additional goal was to evaluate the relationship between calcitriol dose and hypercalcemia.


Cancer Research | 2009

Role of Vitamin D Receptor in the Antiproliferative Effects of Calcitriol in Tumor-Derived Endothelial Cells and Tumor Angiogenesis In vivo

Ivy Chung; Guangzhou Han; Mukund Seshadri; Bryan M. Gillard; Wei-Dong Yu; Barbara A. Foster; Donald L. Trump; Candace S. Johnson

Calcitriol (1,25-dihydroxycholecalciferol), the major active form of vitamin D, is antiproliferative in tumor cells and tumor-derived endothelial cells (TDEC). These actions of calcitriol are mediated at least in part by vitamin D receptor (VDR), which is expressed in many tissues including endothelial cells. To investigate the role of VDR in calcitriol effects on tumor vasculature, we established TRAMP-2 tumors subcutaneously into either VDR wild-type (WT) or knockout (KO) mice. Within 30 days post-inoculation, tumors in KO mice were larger than those in WT (P < 0.001). TDEC from WT expressed VDR and were able to transactivate a reporter gene whereas TDEC from KO mice were not. Treatment with calcitriol resulted in growth inhibition in TDEC expressing VDR. However, TDEC from KO mice were relatively resistant, suggesting that calcitriol-mediated growth inhibition on TDEC is VDR-dependent. Further analysis of the TRAMP-C2 tumor sections revealed that the vessels in KO mice were enlarged and had less pericyte coverage compared with WT (P < 0.001). Contrast-enhanced magnetic resonance imaging showed an increase in vascular volume of TRAMP tumors grown in VDR KO mice compared with WT mice (P < 0.001) and FITC-dextran permeability assay suggested a higher extent of vascular leakage in tumors from KO mice. Using ELISA and Western blot analysis, there was an increase of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, angiopoietin 1, and platelet-derived growth factor-BB levels observed in tumors from KO mice. These results indicate that calcitriol-mediated antiproliferative effects on TDEC are VDR-dependent and loss of VDR can lead to abnormal tumor angiogenesis.

Collaboration


Dive into the Candace S. Johnson's collaboration.

Top Co-Authors

Avatar

Donald L. Trump

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Josephia R. Muindi

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Wei-Dong Yu

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Yingyu Ma

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Wei Luo

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Song Liu

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl Morrison

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Pamela A. Hershberger

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge