Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Candace Su-Jung Tsai is active.

Publication


Featured researches published by Candace Su-Jung Tsai.


Journal of Nanoparticle Research | 2015

Assessing the first wave of epidemiological studies of nanomaterial workers

Saou-Hsing Liou; Candace Su-Jung Tsai; Daniela Pelclova; Mary K. Schubauer-Berigan; Paul A. Schulte

The results of early animal studies of engineered nanomaterials (ENMs) and air pollution epidemiology suggest that it is important to assess the health of ENM workers. Initial epidemiological studies of workers’ exposure to ENMs (<100xa0nm) are reviewed and characterized for their study designs, findings, and limitations. Of the 15 studies, 11 were cross-sectional, 4 were longitudinal (1 was both cross-sectional and longitudinal in design), and 1 was a descriptive pilot study. Generally, the studies used biologic markers as the dependent variables. All 11 cross-sectional studies showed a positive relationship between various biomarkers and ENM exposures. Three of the four longitudinal studies showed a negative relationship; the fourth showed positive findings after a 1-year follow-up. Each study considered exposure to ENMs as the independent variable. Exposure was assessed by mass concentration in 10 studies and by particle count in six studies. Six of them assessed both mass and particle concentrations. Some of the studies had limited exposure data because of inadequate exposure assessment. Generally, exposure levels were not very high in comparison to those in human inhalation chamber studies, but there were some exceptions. Most studies involved a small sample size, from 2 to 258 exposed workers. These studies represent the first wave of epidemiological studies of ENM workers. They are limited by small numbers of participants, inconsistent (and in some cases inadequate) exposure assessments, generally low exposures, and short intervals between exposure and effect. Still, these studies are a foundation for future work; they provide insight into where ENM workers are experiencing potentially adverse effects that might be related to ENM exposures.


Regulatory Toxicology and Pharmacology | 2014

Workshop report: Strategies for setting occupational exposure limits for engineered nanomaterials

Steven C. Gordon; John H. Butala; Janet Carter; Allison Elder; Terry Gordon; George M. Gray; Philip Sayre; Paul A. Schulte; Candace Su-Jung Tsai; Jay West

Occupational exposure limits (OELs) are important tools for managing worker exposures to chemicals; however, hazard data for many engineered nanomaterials (ENMs) are insufficient for deriving OELs by traditional methods. Technical challenges and questions about how best to measure worker exposures to ENMs also pose barriers to implementing OELs. New varieties of ENMs are being developed and introduced into commerce at a rapid pace, further compounding the issue of OEL development for ENMs. A Workshop on Strategies for Setting Occupational Exposure Limits for Engineered Nanomaterials, held in September 2012, provided an opportunity for occupational health experts from various stakeholder groups to discuss possible alternative approaches for setting OELs for ENMs and issues related to their implementation. This report summarizes the workshop proceedings and findings, identifies areas for additional research, and suggests potential avenues for further progress on this important topic.


Journal of Nanoparticle Research | 2013

Potential inhalation exposure and containment efficiency when using hoods for handling nanoparticles

Candace Su-Jung Tsai

Inhalation exposure to airborne nanoparticles (NPs) has been reported during manual activities using typical fume hoods. This research studied potential inhalation exposure associated with the manual handling of NPs using two new nanoparticle-handling enclosures and two biological safety cabinets, and discussed the ability to contain NPs in the hoods to reduce environmental release and exposure. Airborne concentrations of 5xa0nm to 20xa0μm diameter particles were measured while handling nanoalumina particles in various ventilated enclosures. Tests were conducted using two handling conditions and concentrations were measured using real-time particle counters, and particles were collected on transmission electron microscope grids to determine particle morphology and elemental composition. Airflow patterns were characterized visually using a laser-light sheet and fog. The average number concentration increase at breathing zone outside the enclosure was less than 1,400xa0particle/cm3 for each particle size at all tested conditions and the estimated overall mass concentration was about 83xa0μg/m3 which was less than the dosage of typical nanoparticle inhalation exposure studies. The typical front-to-back airflow was used in the studied hoods, which could potentially induce reverse turbulence in the wake region. However, containment of NPs using studied hoods was demonstrated with excellent performance. Smoke tests showed that worker’s hand motion could potentially cause nanoparticle escape. The challenge of front-to-back airflow can be partially overcome by gentle motion, low face velocity, and front exhaust to reduce nanoparticle escape.


Journal of Occupational and Environmental Hygiene | 2015

Characterization of Airborne Nanoparticle Loss in Sampling Tubing

Candace Su-Jung Tsai

Airborne nanoparticle release has been studied extensively lately using a variety of instruments and nanoparticle loss data for the instrument sampling tubes were required. This study used real-time measurements to characterize particle losses. Particle concentrations were measured by Fast Mobility Particle Sizer (FMPS). Electrically conductive and Tygon sampling tubes 7.7 mm I.D. and 2.0, 4.9, 7.0, and 8.4 m long, were used to analyze particle losses. Two different sources of nearly steady-state particles—atmospheric nanoparticles (maximum concentration of 4,000–6,000 particle/cm3) and nebulizer-generated salt aerosols (maximum concentration of 14,000–16,000 particle/cm3)—were utilized. For all test conditions, a reduction in particle number concentration was observed and found to be proportional to tube length for particle diameter (dp) less than 40 nm. A maximum loss up to 30% was found for the longest tube length (8.4 m) at particle size of approximately 8 nm. For particles from 40 to 400 nm, the losses were less than 3%. Measured particle losses were greater than predicted by theory for the smallest particles. The two types of tubing showed similar particle losses for both test aerosols. Particle losses were low for dp greater than 40 nm, and for all particle sizes when the tube length was less than 2 m.


Environmental Science & Technology | 2016

Identification and Mitigation of Generated Solid By-Products during Advanced Electrode Materials Processing

Candace Su-Jung Tsai; Arthur D. Dysart; Jay H. Beltz; Vilas G. Pol

A scalable, solid-state elevated-temperature process was developed to produce high-capacity carbonaceous electrode materials for energy storage devices via decomposition of a starch-based precursor in an inert atmosphere. In a separate study, it is shown that the fabricated carbonaceous architectures are useful as an excellent electrode material for lithium-ion, sodium-ion, and lithium-sulfur batteries. This article focuses on the study and analysis of the formed nanometer-sized by-products during the lab-scale synthesis of the carbon material. The material production process was studied in operando (that is, during the entire duration of heat treatment). The unknown downstream particles in the process exhaust were collected and characterized via aerosol and liquid suspensions, and they were quantified using direct-reading instruments for number and mass concentrations. The airborne emissions were collected using the Tsai diffusion sampler (TDS) for characterization and further analysis. Released by-product aerosols collected in a deionized (DI) water trap were analyzed, and the aerosols emitted from the post-water-suspension were collected and characterized. After long-term sampling, individual particles in the nanometer size range were observed in the exhaust aerosol with layer-structured aggregates formed on the sampling substrate. Upon the characterization of the released aerosol by-products, methods were identified to mitigate possible human and environmental exposures upon industrial implementation.


Journal of Occupational and Environmental Hygiene | 2014

Evaluation of leakage from fume hoods using tracer gas, tracer nanoparticles and nanopowder handling test methodologies.

Kevin H. Dunn; Candace Su-Jung Tsai; Susan R. Woskie; James S. Bennett; Alberto Garcia; Michael J. Ellenbecker

The most commonly reported control used to minimize workplace exposures to nanomaterials is the chemical fume hood. Studies have shown, however, that significant releases of nanoparticles can occur when materials are handled inside fume hoods. This study evaluated the performance of a new commercially available nano fume hood using three different test protocols. Tracer gas, tracer nanoparticle, and nanopowder handling protocols were used to evaluate the hood. A static test procedure using tracer gas (sulfur hexafluoride) and nanoparticles as well as an active test using an operator handling nanoalumina were conducted. A commercially available particle generator was used to produce sodium chloride tracer nanoparticles. Containment effectiveness was evaluated by sampling both in the breathing zone (BZ) of a mannequin and operator as well as across the hood opening. These containment tests were conducted across a range of hood face velocities (60, 80, and 100 ft/min) and with the room ventilation system turned off and on. For the tracer gas and tracer nanoparticle tests, leakage was much more prominent on the left side of the hood (closest to the room supply air diffuser) although some leakage was noted on the right side and in the BZ sample locations. During the tracer gas and tracer nanoparticle tests, leakage was primarily noted when the room air conditioner was on for both the low and medium hood exhaust airflows. When the room air conditioner was turned off, the static tracer gas tests showed good containment across most test conditions. The tracer gas and nanoparticle test results were well correlated showing hood leakage under the same conditions and at the same sample locations. The impact of a room air conditioner was demonstrated with containment being adversely impacted during the use of room air ventilation. The tracer nanoparticle approach is a simple method requiring minimal setup and instrumentation. However, the method requires the reduction in background concentrations to allow for increased sensitivity.


Annals of Occupational Hygiene | 2015

Contamination and Release of Nanomaterials Associated with the Use of Personal Protective Clothing

Candace Su-Jung Tsai

INTRODUCTIONnWe investigated nanomaterial release associated with the contamination of protective clothing during manipulation of clothing fabrics contaminated with nanoparticles. Nanomaterials, when released as airborne nanoparticles, can cause inhalation exposure which is the route of exposure of most concern to cause adverse health effects. Measurement of such nanoparticle re-suspension has not yet been conducted. Protective clothing can be contaminated with airborne nanoparticles during handling and operating processes, typically on the arms and front of the body. The contaminated clothing could release nanoparticles in the general room while performing other activities and manipulating the clothing after work.nnnMETHODSnThe exposures associated with three different fabric materials of contaminated laboratory coats (cotton, polyester, and Tyvek), including the magnitude of contamination and particle release, were investigated in this study by measuring the number concentration increase and the weight change on fabric pieces. This study simulated real life occupational exposure scenarios and was performed in both regular and clean room environments to investigate the effect of background aerosols on the measurements. Concentration were measured using particle spectrometers for diameters from 10nm to 10 µm. Collected aerosol particles and contaminated fabric surfaces were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and elemental composition analysis.nnnRESULTSnThe magnitude of particle release from contaminated lab coat fabric was found to vary by the type of fabric material; cotton fabric showed the highest level of contamination and particle release, followed by Tyvek and polyester fabrics. The polyester lab coat material was found to have the lowest particle release to deposition (R/D) ratio. The particle release number concentrations were in a range of 768-119 particles cm(-3) and 586-187 particles cm(-3) in regular and clean rooms, respectively. Multiple peaks were observed in the number concentration distribution data, with particle diameters peaking at 40-50 and 100-300nm.nnnCONCLUSIONSnThe SEM analysis of the contaminated fabric surface found test particles and other environmental particles. The elemental composition analysis presented detectable response to the studied alumina oxide particles. The laboratory coat primarily made of cotton woven material is not recommended for worker protection against nanoparticle exposure because of the highest particle contamination and release ability. In addition, the result demonstrated that a well-controlled (cleanroom) environment is critical to investigate the factors affecting nanoparticle interaction with protective clothing.


Journal of Nanoparticle Research | 2015

Performance of particulate containment at nanotechnology workplaces

Li-Ming Lo; Candace Su-Jung Tsai; Kevin H. Dunn; Duane R. Hammond; David Marlow; Jennifer L. Topmiller; Michael J. Ellenbecker

The evaluation of engineering controls for the production or use of carbon nanotubes (CNTs) was investigated at two facilities. These control assessments are necessary to evaluate the current status of control performance and to develop proper control strategies for these workplaces. The control systems evaluated in these studies included ventilated enclosures, exterior hoods, and exhaust filtration systems. Activity-based monitoring with direct-reading instruments and filter sampling for microscopy analysis were used to evaluate the effectiveness of control measures at study sites. Our study results showed that weighing CNTs inside the biological safety cabinet can have a 37xa0% reduction on the particle concentration in the worker’s breathing zone, and produce a 42xa0% lower area concentration outside the enclosure. The ventilated enclosures used to reduce fugitive emissions from the production furnaces exhibited good containment characteristics when closed, but they failed to contain emissions effectively when opened during product removal/harvesting. The exhaust filtration systems employed for exhausting these ventilated enclosures did not provide promised collection efficiencies for removing engineered nanomaterials from furnace exhaust. The exterior hoods were found to be a challenge for controlling emissions from machining nanocomposites: the downdraft hood effectively contained and removed particles released from the manual cutting process, but using the canopy hood for powered cutting of nanocomposites created 15–20xa0% higher ultrafine (<500xa0nm) particle concentrations at the source and at the worker’s breathing zone. The microscopy analysis showed that CNTs can only be found at production sources but not at the worker breathing zones during the tasks monitored.


Journal of Nanoparticle Research | 2018

A sampler designed for nanoparticles and respirable particles with direct analysis feature

Candace Su-Jung Tsai; Daniel Theisen

A sampler has been designed to collect particles in the nanometer and respirable sizes directly onto a membrane filter and transmission electron microscopy (TEM) grid. The novel design aspects of this sampler include the selection of the diameter of the inlet probe, geometry of the sampler, and the resulting air flow to the sampler. Together, they control the cutoff diameter, which was determined experimentally to be a mass median aerodynamic diameter (MMAD) of 3.8xa0μm. The maximum aerodynamic diameter entering the sampler is designed to be approximately 8xa0μm. Nanometer-sized particles are collected on both the filter and grid through diffusion, as confirmed by testing with aluminum oxide engineered nanoparticles collected on the filter which measured a count median diameter (CMD) of 500xa0nm and a geometric standard deviation (GSD) of 1.97. The primary particles and small agglomerates collected on the grid have a CMD of 100xa0nm and GSD of 2.3. This diffusion sampler collected close to, if not 100%, of the particles entering the sampler. The sampler is easily wearable for personal exposure and environmental sampling, operates at 0.3xa0L/min, and can collect particles in various settings at indoor and outdoor environments. Particles are analyzed directly by transmission electron microscope on the grid and by scanning electron microscope on the filter to assess the exposure through particle counts and elemental composition analysis.


Journal of Nanoparticle Research | 2017

Particle Emissions from Laboratory Activities Involving Carbon Nanotubes

Li-Ming Lo; Candace Su-Jung Tsai; William A. Heitbrink; Kevin H. Dunn; Jennifer L. Topmiller; Michael J. Ellenbecker

This site study was conducted in a chemical laboratory to evaluate nanomaterial emissions from 20–30-nm-diameter bundles of single-walled carbon nanotubes (CNTs) during product development activities. Direct-reading instruments were used to monitor the tasks in real time, and airborne particles were collected using various methods to characterize released nanomaterials using electron microscopy and elemental carbon (EC) analyses. CNT clusters and a few high-aspect-ratio particles were identified as being released from some activities. The EC concentration (0.87xa0μg/m3) at the source of probe sonication was found to be higher than other activities including weighing, mixing, centrifugation, coating, and cutting. Various sampling methods all indicated different levels of CNTs from the activities; however, the sonication process was found to release the highest amounts of CNTs. It can be cautiously concluded that the task of probe sonication possibly released nanomaterials into the laboratory and posed a risk of surface contamination. Based on these results, the sonication of CNT suspension should be covered or conducted inside a ventilated enclosure with proper filtration or a glovebox to minimize the potential of exposure.

Collaboration


Dive into the Candace Su-Jung Tsai's collaboration.

Top Co-Authors

Avatar

Michael J. Ellenbecker

University of Massachusetts Lowell

View shared research outputs
Top Co-Authors

Avatar

Kevin H. Dunn

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Topmiller

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Li-Ming Lo

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Paul A. Schulte

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Alberto Garcia

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Castano

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge