Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Candice Gardner is active.

Publication


Featured researches published by Candice Gardner.


Genome Biology | 2013

Comprehensive genotyping of the USA national maize inbred seed bank

Maria C. Romay; Mark J. Millard; Jeffrey C. Glaubitz; Jason A. Peiffer; Kelly Swarts; Terry M. Casstevens; Robert J. Elshire; Charlotte B. Acharya; Sharon E. Mitchell; Sherry Flint-Garcia; Michael D. McMullen; James B. Holland; Edward S. Buckler; Candice Gardner

BackgroundGenotyping by sequencing, a new low-cost, high-throughput sequencing technology was used to genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA. The collection includes inbred lines from breeding programs all over the world.ResultsThe method produced 681,257 single-nucleotide polymorphism (SNP) markers distributed across the entire genome, with the ability to detect rare alleles at high confidence levels. More than half of the SNPs in the collection are rare. Although most rare alleles have been incorporated into public temperate breeding programs, only a modest amount of the available diversity is present in the commercial germplasm. Analysis of genetic distances shows population stratification, including a small number of large clusters centered on key lines. Nevertheless, an average fixation index of 0.06 indicates moderate differentiation between the three major maize subpopulations. Linkage disequilibrium (LD) decays very rapidly, but the extent of LD is highly dependent on the particular group of germplasm and region of the genome. The utility of these data for performing genome-wide association studies was tested with two simply inherited traits and one complex trait. We identified trait associations at SNPs very close to known candidate genes for kernel color, sweet corn, and flowering time; however, results suggest that more SNPs are needed to better explore the genetic architecture of complex traits.ConclusionsThe genotypic information described here allows this publicly available panel to be exploited by researchers facing the challenges of sustainable agriculture through better knowledge of the nature of genetic diversity.


Genetics | 2014

The Genetic Architecture of Maize Height

Jason A. Peiffer; Maria C. Romay; Michael A. Gore; Sherry Flint-Garcia; Zhiwu Zhang; Mark J. Millard; Candice Gardner; Michael D. McMullen; James B. Holland; Peter J. Bradbury; Edward S. Buckler

Height is one of the most heritable and easily measured traits in maize (Zea mays L.). Given a pedigree or estimates of the genomic identity-by-state among related plants, height is also accurately predictable. But, mapping alleles explaining natural variation in maize height remains a formidable challenge. To address this challenge, we measured the plant height, ear height, flowering time, and node counts of plants grown in >64,500 plots across 13 environments. These plots contained >7300 inbreds representing most publically available maize inbreds in the United States and families of the maize Nested Association Mapping (NAM) panel. Joint-linkage mapping of quantitative trait loci (QTL), fine mapping in near isogenic lines (NILs), genome-wide association studies (GWAS), and genomic best linear unbiased prediction (GBLUP) were performed. The heritability of maize height was estimated to be >90%. Mapping NAM family-nested QTL revealed the largest explained 2.1 ± 0.9% of height variation. The effects of two tropical alleles at this QTL were independently validated by fine mapping in NIL families. Several significant associations found by GWAS colocalized with established height loci, including brassinosteroid-deficient dwarf1, dwarf plant1, and semi-dwarf2. GBLUP explained >80% of height variation in the panels and outperformed bootstrap aggregation of family-nested QTL models in evaluations of prediction accuracy. These results revealed maize height was under strong genetic control and had a highly polygenic genetic architecture. They also showed that multiple models of genetic architecture differing in polygenicity and effect sizes can plausibly explain a population’s variation in maize height, but they may vary in predictive efficacy.


BMC Plant Biology | 2014

Genome-wide association study of Fusarium ear rot disease in the U.S.A. maize inbred line collection

Charles T. Zila; Funda Ogut; Maria C. Romay; Candice Gardner; Edward S. Buckler; James B. Holland

BackgroundResistance to Fusarium ear rot of maize is a quantitative and complex trait. Marker-trait associations to date have had small additive effects and were inconsistent between previous studies, likely due to the combined effects of genetic heterogeneity and low power of detection of many small effect variants. The complexity of inheritance of resistance hinders the use marker-assisted selection for ear rot resistance.ResultsWe conducted a genome-wide association study (GWAS) for Fusarium ear rot resistance in a panel of 1687 diverse inbred lines from the USDA maize gene bank with 200,978 SNPs while controlling for background genetic relationships with a mixed model and identified seven single nucleotide polymorphisms (SNPs) in six genes associated with disease resistance in either the complete inbred panel (1687 lines with highly unbalanced phenotype data) or in a filtered inbred panel (734 lines with balanced phenotype data). Different sets of SNPs were detected as associated in the two different data sets. The alleles conferring greater disease resistance at all seven SNPs were rare overall (below 16%) and always higher in allele frequency in tropical maize than in temperate dent maize. Resampling analysis of the complete data set identified one robust SNP association detected as significant at a stringent p-value in 94% of data sets, each representing a random sample of 80% of the lines. All associated SNPs were in exons, but none of the genes had predicted functions with an obvious relationship to resistance to fungal infection.ConclusionsGWAS in a very diverse maize collection identified seven SNP variants each associated with between 1% and 3% of trait variation. Because of their small effects, the value of selection on these SNPs for improving resistance to Fusarium ear rot is limited. Selection to combine these resistance alleles combined with genomic selection to improve the polygenic background resistance might be fruitful. The genes associated with resistance provide candidate gene targets for further study of the biological pathways involved in this complex disease resistance.


Genetic Resources and Crop Evolution | 2008

Assessing phenotypic, biochemical, and molecular diversity in coriander (Coriandrum sativum L.) germplasm

Pedro A. López; Mark P. Widrlechner; Philipp W. Simon; Satish Rai; Terri D. Boylston; Terry A. Isbell; T. B. Bailey; Candice Gardner; Lester A. Wilson

Our goals for this research were to elucidate phenotypic and biochemical diversity in coriander (Coriandrum sativum L.) populations maintained at the North Central Regional Plant Introduction Station in Ames, IA, and examine relationships between amplified fragment length polymorphism (AFLP) markers and patterns of phenotypic and biochemical diversity. Phenotypic and biochemical traits were evaluated, and analyses of variance and mean comparisons were performed on the resulting data sets. Euclidean distances from phenotypic (PD) and biochemical (BD) data were estimated, and modified Rogers’ distances (RD) were estimated for 80 polymorphic AFLP markers. These data were subjected to cluster analyses (CA) and principal components analyses (PCA), to reveal patterns among populations, and to analyses of molecular variance (AMOVA) for grouping patterns from PD and BD by using the 80 polymorphic AFLP markers. Resulting phenotypic, biochemical, and molecular distance matrices were also compared by applying Mantel tests. Our results describe significant differences among populations for all the phenotypic traits, and dendrograms obtained from PD and BD revealed complex phenetic patterns, as did groups from PCA. The primary seed essential oils and nearly all fatty-acid components were identified and their abundance measured; the primary chemical constituents of corresponding PCA groups are described herein. Molecular evidence supported phenotypic and biochemical subgroups. However, variation attributed among subgroups and groups was very low (∼4–6%), while variation among populations within groups was intermediate (∼24–26%), and that within populations was large (∼69–70%), reflecting weak differentiation among subgroups and groups, which was confirmed by values for fixation indices. Phenotypic subgroups described in this study differed somewhat from previous infraspecific classifications. Weak correlations were found between the phenotypic and biochemical matrices and between the biochemical and AFLP matrices. No correlation was found between the phenotypic and AFLP matrices. These results may be related to coriander’s phenotypic plasticity, its wide range in lifecycle duration, its predominantly allogamous reproductive biology, a human-selection process focused on special traits that may be controlled by few genes, and the widespread trade of coriander seeds as a spice, which may result in dynamic, poorly differentiated molecular variation, even when phenotypic and biochemical differentiation is easily documented.


Journal of Astm International | 2010

Characterization of Corn Grains for Dry-Grind Ethanol Production

Sathaporn Srichuwong; Jelena Gutesa; Michael Blanco; Susan A. Duvick; Candice Gardner; Jay-lin Jane

The objectives of this study were to understand how the composition of corn kernels and starch structure affected the enzyme hydrolysis of starch in dry-grind corn and the ethanol yield from yeast fermentation. Four selected corn inbred lines were used in this study. Starch in uncooked dry-grind corn samples showed greater enzyme digestibility than did the uncooked starch isolated from the same source by wet-milling process. The greater digestibility of starch in uncooked dry-grind corn correlated with a physical damage of starch granules. In contrast, starch in cooked dry-grind corn samples displayed less enzyme digestibility than did the cooked isolated starch. The difference could be attributed to interference caused by non-starch components in the dry-grind corn. The entrapment of starch in protein matrix and the formation of amylose-lipid helical complexes and/or retrograded starch may decrease the enzyme digestibility of starch in cooked dry-grind corn. Lab-scale ethanol production showed that ethanol yield after 72 h fermentation of the four corn inbred lines ranged between 34.3 and 38.0 g ethanol/100 g dry-grind corn. The conversion efficiency at 72 h of fermentation ranged between 86.8 % and 90.3 % of the theoretical ethanol yield. The highest ethanol yield was found in the corn line containing the largest starch content and the smallest amounts of lipid and protein.


Trends in Plant Science | 2017

Emerging Avenues for Utilization of Exotic Germplasm

Cuiling Wang; Songlin Hu; Candice Gardner; Thomas Lübberstedt

Breeders have been successful in increasing crop performance by exploiting genetic diversity over time. However, the reported annual yield increases are not sufficient in view of rapid human population growth and global environmental changes. Exotic germplasm possesses high levels of genetic diversity for valuable traits. However, only a small fraction of naturally occurring genetic diversity is utilized. Moreover, the yield gap between elite and exotic germplasm widens, which increases the effort needed to use exotic germplasm and to identify beneficial alleles and for their introgression. The advent of high-throughput genotyping and phenotyping technologies together with emerging biotechnologies provide new opportunities to explore exotic genetic variation. This review will summarize potential challenges for utilization of exotic germplasm and provide solutions.


Euphytica | 2006

Analysis of bulked and redundant accessions of Brassica germplasm using assignment tests of microsatellite markers

Von Mark V. Cruz; Jason D Nason; Richard Luhman; Laura F. Marek; Randy C. Shoemaker; E. Charles Brummer; Candice Gardner

This study was conducted to determine if Brassica germplasm bulks created and maintained by the USDA-ARS North Central Plant Introduction Station (NCRPIS) were made with genetically indistinguishable component accessions and to examine newly identified putative duplicate accessions to determine if they can be bulked. Using ten microsatellite primer pairs, we genotyped two bulks of B. rapa L. ssp. dichotoma (Roxb.) Hanelt comprising four accessions and three bulks of B. rapa L. ssp. trilocularis (Roxb.) Hanelt comprising fourteen accessions, as well as four pairs of putatively duplicate accessions of B.␣napus L. Assignment tests on ten individual plants per accession were conducted using a model-based clustering method to arrive at probabilities of likelihood of accession assignment. The assignment tests indicated that one of the two bulks of B. rapa ssp. dichotoma involves genetically heterogeneous accessions. It was observed in the B. rapa ssp. trilocularis bulks that the component accessions could be differentiated into groups, with misassignments observed most frequent within groups. In B. napus, only one of the four pairs of putative duplicates showed significant genetic differentiation. The other three pairs of putative duplicates lack differences and support the creation of bulks. The results of the assignment tests were in agreement with cluster analyses and tests of population differentiation. Implications of these results in terms of germplasm management include the maintenance and/or re-creation of some Brassica germplasm bulks by excluding those accessions identified as being unique in this study.


Carbohydrate Polymers | 2016

Dosage effects of Waxy gene on the structures and properties of corn starch

Hanyu Yangcheng; Michael Blanco; Candice Gardner; Xuehong Li; Jay-lin Jane

The objective of this study was to understand dosage effects of the Waxy gene on the structures of amylose and amylopectin and on the properties of corn starch. Reciprocal crossing of isogenic normal and waxy corn lines was conducted to develop hybrids with different dosages (0, 1, 2, 3) of Waxy gene in the endosperm. The amylose content of starch and proportions of branch chains of DP 17-30 and extra-long branch chains (DP>100) of amylopectin were positively correlated with the Waxy-gene dosage. Proportions of short (DP<17) and long branch-chains (DP 30-80), however, were negatively correlated with the Waxy-gene dosage. The gelatinization conclusion-temperature and temperature-range of the starch were negatively correlated with the Waxy-gene dosage, indicating that amylose facilitated dissociation of the surrounding crystalline regions. These results helped us understand the function of granule-bound starch synthase I in the biosynthesis of amylose and amylopectin and impacts of Waxy-gene dosages on the properties of corn starch.


Plant Science | 2017

Brassinosteroid and gibberellin control of seedling traits in maize (Zea mays L.)

Songlin Hu; Darlene L. Sanchez; Cuiling Wang; Alexander E. Lipka; Yanhai Yin; Candice Gardner; Thomas Lübberstedt

In this study, we established two doubled haploid (DH) libraries with a total of 207 DH lines. We applied BR and GA inhibitors to all DH lines at seedling stage and measured seedling BR and GA inhibitor responses. Moreover, we evaluated field traits for each DH line (untreated). We conducted genome-wide association studies (GWAS) with 62,049 genome wide SNPs to explore the genetic control of seedling traits by BR and GA. In addition, we correlate seedling stage hormone inhibitor response with field traits. Large variation for BR and GA inhibitor response and field traits was observed across these DH lines. Seedling stage BR and GA inhibitor response was significantly correlate with yield and flowering time. Using three different GWAS approaches to balance false positive/negatives, multiple SNPs were discovered to be significantly associated with BR/GA inhibitor responses with some localized within gene models. SNPs from gene model GRMZM2G013391 were associated with GA inhibitor response across all three GWAS models. This gene is expressed in roots and shoots and was shown to regulate GA signaling. These results show that BRs and GAs have a great impact for controlling seedling growth. Gene models from GWAS results could be targets for seeding traits improvement.


The Plant Genome | 2018

Association Mapping of Flowering and Height Traits in Germplasm Enhancement of Maize Doubled Haploid (GEM-DH) Lines

Adam Vanous; Candice Gardner; Michael Blanco; Adam Martin-Schwarze; Alexander E. Lipka; Sherry Flint-Garcia; M. Bohn; Jode W. Edwards; Thomas Lübberstedt

Genome‐wide association mapping in exotic derived double haploid maize lines. Genomic areas collocate with previously identified QTLs and candidate genes for flowering and height. Novel regions identified allow for future research of adapting exotic maize to the central‐U.S. Corn‐Belt.

Collaboration


Dive into the Candice Gardner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James B. Holland

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge