Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Candice J. Hansen is active.

Publication


Featured researches published by Candice J. Hansen.


Science | 2006

Enceladus' water vapor plume.

Candice J. Hansen; Larry W. Esposito; A. I. F. Stewart; Joshua E. Colwell; Amanda R. Hendrix; Wayne R. Pryor; Donald E. Shemansky; Richard D. West

The Cassini spacecraft flew close to Saturns small moon Enceladus three times in 2005. Cassinis UltraViolet Imaging Spectrograph observed stellar occultations on two flybys and confirmed the existence, composition, and regionally confined nature of a water vapor plume in the south polar region of Enceladus. This plume provides an adequate amount of water to resupply losses from Saturns E ring and to be the dominant source of the neutral OH and atomic oxygen that fill the Saturnian system.


Science | 1986

Voyager 2 in the Uranian system: imaging science results

Bradford A. Smith; Laurence A. Soderblom; R. F. Beebe; D. Bliss; Joseph M. Boyce; A. Brahic; Geoffrey Briggs; Robert H. Brown; S. A. Collins; Allan F. Cook; Steven K. Croft; Jeffrey N. Cuzzi; G. E. Danielson; Merton E. Davies; T.E. Dowling; David Godfrey; Candice J. Hansen; M. Camille Harris; Garry E. Hunt; A. P. Ingersoll; Torrence V. Johnson; R. J. Krauss; Harold Masursky; David Morrison; Timothy Owen; J. B. Plescia; James B. Pollack; Carolyn C. Porco; Kathy A. Rages; Carl Sagan

Voyager 2 images of the southern hemisphere of Uranus indicate that submicrometersize haze particles and particles of a methane condensation cloud produce faint patterns in the atmosphere. The alignment of the cloud bands is similar to that of bands on Jupiter and Saturn, but the zonal winds are nearly opposite. At mid-latitudes (-70� to -27�), where winds were measured, the atmosphere rotates faster than the magnetic field; however, the rotation rate of the atmosphere decreases toward the equator, so that the two probably corotate at about -20�. Voyager images confirm the extremely low albedo of the ring particles. High phase angle images reveal on the order of 102 new ringlike features of very low optical depth and relatively high dust abundance interspersed within the main rings, as well as a broad, diffuse, low optical depth ring just inside the main rings system. Nine of the newly discovered small satellites (40 to 165 kilometers in diameter) orbit between the rings and Miranda; the tenth is within the ring system. Two of these small objects may gravitationally confine the e ring. Oberon and Umbriel have heavily cratered surfaces resembling the ancient cratered highlands of Earths moon, although Umbriel is almost completely covered with uniform dark material, which perhaps indicates some ongoing process. Titania and Ariel show crater populations different from those on Oberon and Umbriel; these were probably generated by collisions with debris confined to their orbits. Titania and Ariel also show many extensional fault systems; Ariel shows strong evidence for the presence of extrusive material. About halfof Mirandas surface is relatively bland, old, cratered terrain. The remainder comprises three large regions of younger terrain, each rectangular to ovoid in plan, that display complex sets of parallel and intersecting scarps and ridges as well as numerous outcrops of bright and dark materials, perhaps suggesting some exotic composition.


Geology | 2012

Planet-wide sand motion on Mars

Nathan T. Bridges; Mary C. Bourke; Paul E. Geissler; Maria E. Banks; Cindy Colon; Serina Diniega; Matthew P. Golombek; Candice J. Hansen; Sarah S. Mattson; Alfred S. McEwen; Michael T. Mellon; N. W. Stantzos; B. J. Thomson

Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere. We show that many sand ripples and dunes across Mars exhibit movement of as much as a few meters per year, demonstrating that Martian sand migrates under current conditions in diverse areas of the planet. Most motion is probably driven by wind gusts that are not resolved in global circulation models. A past climate with a thicker atmosphere is only required to move large ripples that contain coarse grains.


Science | 1990

Triton's geyser-like plumes: Discovery and basic characterization

L. A. Soderblom; S. W. Kieffer; T. L. Becker; Robert H. Brown; A. F. Cook; Candice J. Hansen; Torrence V. Johnson; Randolph L. Kirk; Eugene M. Shoemaker

At least four active geyser-like eruptions were discovered in Voyager 2 images of Triton, Neptunes large satellite. The two best documented eruptions occur as columns of dark material rising to an altitude of about 8 kilometers where dark clouds of material are left suspended to drift downwind over 100 kilometers. The radii of the rising columns appear to be in the range of several tens of meters to a kilometer. One model for the mechanism to drive the plumes involves heating of nitrogen ice in a subsurface greenhouse environment; nitrogen gas pressurized by the solar heating explosively vents to the surface carrying clouds of ice and dark partides into the atmosphere. A temperature increase of less than 4 kelvins above the ambient surface value of 38 � 3 kelvins is more than adequate to drive the plumes to an 8-kilometer altitude. The mass flux in the trailing clouds is estimated to consist of up to 10 kilograms of fine dark particles per second or twice as much nitrogen ice and perhaps several hundred or more kilograms of nitrogen gas per second. Each eruption may last a year or more, during which on the order of a tenth of a cubic kilometer of ice is sublimed.


Science | 2017

Jupiter’s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft

S. J. Bolton; A. Adriani; Virgil Adumitroaie; Michael E. D. Allison; J. D. Anderson; Sushil K. Atreya; Jeremy Bloxham; Shannon T. Brown; J. E. P. Connerney; E. DeJong; William M. Folkner; Daniel Gautier; D. Grassi; S. Gulkis; Tristan Guillot; Candice J. Hansen; William B. Hubbard; L. Iess; A. P. Ingersoll; Michael A. Janssen; John Leif Jørgensen; Yohai Kaspi; Steven M. Levin; Chao Li; Jonathan I. Lunine; Y. Miguel; A. Mura; G. S. Orton; Tobias Owen; Michael A. Ravine

Juno swoops around giant Jupiter Jupiter is the largest and most massive planet in our solar system. NASAs Juno spacecraft arrived at Jupiter on 4 July 2016 and made its first close pass on 27 August 2016. Bolton et al. present results from Junos flight just above the cloud tops, including images of weather in the polar regions and measurements of the magnetic and gravitational fields. Juno also used microwaves to peer below the visible surface, spotting gas welling up from the deep interior. Connerney et al. measured Jupiters aurorae and plasma environment, both as Juno approached the planet and during its first close orbit. Science, this issue p. 821, p. 826 Juno’s first close pass over Jupiter provides answers and fresh questions about the giant planet. On 27 August 2016, the Juno spacecraft acquired science observations of Jupiter, passing less than 5000 kilometers above the equatorial cloud tops. Images of Jupiter’s poles show a chaotic scene, unlike Saturn’s poles. Microwave sounding reveals weather features at pressures deeper than 100 bars, dominated by an ammonia-rich, narrow low-latitude plume resembling a deeper, wider version of Earth’s Hadley cell. Near-infrared mapping reveals the relative humidity within prominent downwelling regions. Juno’s measured gravity field differs substantially from the last available estimate and is one order of magnitude more precise. This has implications for the distribution of heavy elements in the interior, including the existence and mass of Jupiter’s core. The observed magnetic field exhibits smaller spatial variations than expected, indicative of a rich harmonic content.


Science | 2008

The Dust Halo of Saturn's Largest Icy Moon, Rhea

G. H. Jones; E. Roussos; N. Krupp; Uwe Beckmann; A. J. Coates; Frank Judson Crary; Iannis Dandouras; Valeri Dikarev; M. K. Dougherty; P. Garnier; Candice J. Hansen; Amanda R. Hendrix; G. B. Hospodarsky; Robert E. Johnson; Sascha Kempf; Krishan K. Khurana; S. M. Krimigis; Harald Krüger; W. S. Kurth; A. Lagg; H. J. McAndrews; D. G. Mitchell; C. Paranicas; Frank Postberg; C. T. Russell; Joachim Saur; Martin Seiß; Frank Spahn; Ralf Srama; Darrell F. Strobel

Saturns moon Rhea had been considered massive enough to retain a thin, externally generated atmosphere capable of locally affecting Saturns magnetosphere. The Cassini spacecrafts in situ observations reveal that energetic electrons are depleted in the moons vicinity. The absence of a substantial exosphere implies that Rheas magnetospheric interaction region, rather than being exclusively induced by sputtered gas and its products, likely contains solid material that can absorb magnetospheric particles. Combined observations from several instruments suggest that this material is in the form of grains and boulders up to several decimetres in size and orbits Rhea as an equatorial debris disk. Within this disk may reside denser, discrete rings or arcs of material.


Icarus | 1992

A thermal model for the seasonal nitrogen cycle on Triton

Candice J. Hansen; David A. Paige

A Mars thermal model has been adapted to study the seasonal nitrogen cycle on Triton. Unlike other models published to date, it incorporates diurnal and seasonal subsurface heat conduction, and accounts for the heat capacity of N2 frost deposits. Key observables that this model attempts to reproduce include Tritons atmospheric pressure and surface albedo features at the time of the Voyager encounter, as well as changes in Tritons disk-integrated spectral properties between 1977 and 1989. Subsurface heat conduction is found to have an important effect on the behavior of Tritons polar caps and atmospheric pressure fluctuations. The results of this model differ from those of previous studies in that they generally do not predict the catastrophic freeze-out of Tritons atmosphere on a seasonal basis. The model results indicate that even for a wide range of possible input parameters, it is unlikely that Tritons bright southern polar cap is a seasonal nitrogen deposit, because it would have largely sublimated before the Voyager encounter. However, these results do not rule out the possibility of a large bright permanent polar cap in Tritons southern hemisphere. The best agreement between the model results and the available observations is obtained when Tritons seasonal nitrogen frost deposits are assumed to be darker than the undelying substrate. Assuming a constant nitrogen frost albedo of 0.62, a frost emissivity of 0.5, a substrate albedo of 0.8, and a substrate thermal inertia of 7 × 10−3 cal cm−2 K−1sec−12 yields good agreement with the surface pressure and global albedo patterns observed during the Voyager encounter, as well as a rapid change in disk-integrated albedo from 1977 to 1989 due to the retreat and disappearance of a dark south seasonal polar cap. These results lend support to microphysical arguments for the presence of dark, or smooth, translucent nitrogen frost on the surface of Triton.


Astronomy and Astrophysics | 2008

Radiation transport of heliospheric Lyman-alpha from combined Cassini and Voyager data sets

Wayne R. Pryor; P. Gangopadhyay; Bill R. Sandel; T. Forrester; Eric Quémerais; E. Möbius; Larry W. Esposito; Ian Stewart; William E. McClintock; A. Jouchoux; Joshua E. Colwell; Vladislav V. Izmodenov; Yury G. Malama; K. Tobiska; Donald E. Shemansky; Joseph M. Ajello; Candice J. Hansen; M. Bzowski

Aims. Heliospheric neutral hydrogen scatters solar Lyman-α radiation from the Sun with “27-day” intensity modulations observed near Earth due to the Sun’s rotation combined with Earth’s orbital motion. These modulations are increasingly damped in amplitude at larger distances from the Sun due to multiple scattering in the heliosphere, providing a diagnostic of the interplanetary neutral hydrogen density independent of instrument calibration. Methods. This paper presents Cassini data from 2003−2004 obtained downwind near Saturn at ∼10 AU that at times show undamped “27-day” waves in good agreement with the single-scattering models of Pryor et al. (1992, ApJ, 394, 363). Simultaneous Voyager 1 data from 2003−2004 obtained upwind at a distance of 88.8−92.6 AU from the Sun show waves damped by a factor of ∼0.21. The observed degree of damping is interpreted in terms of Monte Carlo multiple-scattering calculations (e.g., Keller et al. 1981, AA Izmodenov et al. 2001, J. Geophys. Res., 106, 10681; Baranov & Izmodenov 2006, Fluid Dyn., 41, 689). Results. We conclude that multiple scattering is definitely occurring in the outer heliosphere. Both models compare favorably to the data, using heliospheric neutral H densities at the termination shock of 0.085 cm −3 and 0.095 cm −3 . This work generally agrees with earlier discussions of Voyager data in Quemerais et al. (1996, ApJ, 463, 349) showing the importance of multiple scattering but is based on Voyager data obtained at larger distances from the Sun (with larger damping) simultaneously with Cassini data obtained closer to the Sun.


Astronomy and Astrophysics | 2007

Enceladus: Cassini observations and implications for the search for life

C. D. Parkinson; Mao-Chang Liang; Hyman Hartman; Candice J. Hansen; Giovanna Tinetti; Victoria S. Meadows; Joseph L. Kirschvink; Yuk L. Yung

Aims. The recent Cassini discovery of water vapor plumes ejected from the south pole of the Saturnian satellite, Enceladus, presents a unique window of opportunity for the detection of extant life in our solar system. Methods. With its significant geothermal energy source propelling these plumes >80 km from the surface of the moon and the ensuing large temperature gradient with the surrounding environment, it is possible to have the weathering of rocks by liquid water at the rock/liquid interface. For the cases of the putatively detected salt-water oceans beneath the ice crusts of Europa and Callisto, an isolated subsurface ocean without photosynthesis or contact with an oxidizing atmosphere will approach chemical equilibrium and annihilate any ecosystems dependent on redox gradients unless there is a substantial alternative energy source. This thermodynamic tendency imposes severe constraints on any biota that is based on chemical energy. On Enceladus, the weathering of rocks by liquid water and any concomitant radioactive emissions are possible incipient conditions for life. If there is CO, CO2 and NH3 present in the spectra obtained from the plume, then this is possible evidence that amino acids could be formed at the rock/liquid interface of Enceladus. The combination of a hydrological cycle, chemical redox gradient and geochemical cycle give favorable conditions for life. Results. We discuss the search for signatures of these species and organics in the Cassini UVIS spectra of the plume and implications for the possible detection of life.


The Astrophysical Journal | 2014

A New Understanding of the Europa Atmosphere and Limits on Geophysical Activity

Donald E. Shemansky; Yuk L. Yung; Xianming Liu; J. Yoshii; Candice J. Hansen; Amanda R. Hendrix; Larry W. Esposito

Deep extreme ultraviolet spectrograph exposures of the plasma sheet at the orbit of Europa, obtained in 2001 using the Cassini Ultraviolet Imaging Spectrograph experiment, have been analyzed to determine the state of the gas. The results are in basic agreement with earlier results, in particular with Voyager encounter measurements of electron density and temperature. Mass loading rates and lack of detectable neutrals in the plasma sheet, however, are in conflict with earlier determinations of atmospheric composition and density at Europa. A substantial fraction of the plasma species at the Europa orbit are long-lived sulfur ions originating at Io, with ~25% derived from Europa. During the outward radial diffusion process to the Europa orbit, heat deposition forces a significant rise in plasma electron temperature and latitudinal size accompanied with conversion to higher order ions, a clear indication that mass loading from Europa is very low. Analysis of far ultraviolet spectra from exposures on Europa leads to the conclusion that earlier reported atmospheric measurements have been misinterpreted. The results in the present work are also in conflict with a report that energetic neutral particles imaged by the Cassini ion and neutral camera experiment originate at the Europa orbit. An interpretation of persistent energetic proton pitch angle distributions near the Europa orbit as an effect of a significant population of neutral gas is also in conflict with the results of the present work. The general conclusion drawn here is that Europa is geophysically far less active than inferred in previous research, with mass loading of the plasma sheet ≤4.5 x 10^(25) atoms s^(-1) two orders of magnitude below earlier published calculations. Temporal variability in the region joining the Io and Europa orbits, based on the accumulated evidence, is forced by the response of the system to geophysical activity at Io. No evidence for the direct injection of H_2O into the Europa atmosphere or from Europa into the magnetosphere system, as has been observed at Enceladus in the Saturn system, is obtained in the present investigation.

Collaboration


Dive into the Candice J. Hansen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. J. Bolton

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda R. Hendrix

Planetary Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald E. Shemansky

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

J. E. P. Connerney

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Ganna Portyankina

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge