Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Canhui Li is active.

Publication


Featured researches published by Canhui Li.


Cell | 1992

Purification and functional reconstitution of the cystic fibrosis transmembrane conductance regulator (CFTR)

Christine E. Bear; Canhui Li; Norbert Kartner; Robert J. Bridges; Tim Jensen; Mohabir Ramjeesingh; John R. Riordan

Circumstantial evidence has accumulated suggesting that CFTR is a regulated low-conductance Cl- channel. To test this postulate directly, we have purified to homogeneity a recombinant CFTR protein from a high-level baculovirus-infected insect cell line. Evidence of purity included one- and two-dimensional gel electrophoresis, N-terminal peptide sequence, and quantitative amino acid analysis. Reconstitution into proteoliposomes at less than one molecule per vesicle was accomplished by established procedures. Nystatin and ergosterol were included in these vesicles, so that nystatin conductance could serve as a quantitative marker of vesicle fusion with a planar lipid bilayer. Upon incorporation, purified CFTR exhibited regulated chloride channel activity, providing evidence that the protein itself is the channel. This activity exhibited the basic biophysical and regulatory properties of the type of Cl- channel found exclusively in CFTR-expressing cell types and believed to underlie cAMP-evoked secretion in epithelial cells.


Journal of Biological Chemistry | 1996

ATPase Activity of the Cystic Fibrosis Transmembrane Conductance Regulator

Canhui Li; Mohabir Ramjeesingh; Wei Wang; Elizabeth Garami; Marek Hewryk; Daniel Lee; Johanna M. Rommens; Kevin Galley; Christine E. Bear

The gene mutated in cystic fibrosis codes for the cystic fibrosis transmembrane conductance regulator (CFTR), a cyclic AMP-activated chloride channel thought to be critical for salt and water transport by epithelial cells. Plausible models exist to describe a role for ATP hydrolysis in CFTR channel activity; however, biochemical evidence that CFTR possesses intrinsic ATPase activity is lacking. In this study, we report the first measurements of the rate of ATP hydrolysis by purified, reconstituted CFTR. The mutation CFTRG551D resides within a motif conserved in many nucleotidases and is known to cause severe human disease. Following reconstitution the mutant protein exhibited both defective ATP hydrolysis and channel gating, providing direct evidence that CFTR utilizes ATP to gate its channel activity.


The EMBO Journal | 2003

CFTR directly mediates nucleotide-regulated glutathione flux.

Ilana Kogan; Mohabir Ramjeesingh; Canhui Li; Jackie F Kidd; Yanchun Wang; Elaine M. Leslie; Susan P. C. Cole; Christine E. Bear

Studies have shown that expression of cystic fibrosis transmembrane conductance regulator (CFTR) is associated with enhanced glutathione (GSH) efflux from airway epithelial cells, implicating a role for CFTR in the control of oxidative stress in the airways. To define the mechanism underlying CFTR‐associated GSH flux, we studied wild‐type and mutant CFTR proteins expressed in Sf9 membranes, as well as purified and reconstituted CFTR. We show that CFTR‐expressing membrane vesicles mediate nucleotide‐activated GSH flux, which is disrupted in the R347D pore mutant, and in the Walker A K464A and K1250A mutants. Further, we reveal that purified CFTR protein alone directly mediates nucleotide‐dependent GSH flux. Interestingly, although ATP supports GSH flux through CFTR, this activity is enhanced in the presence of the non‐hydrolyzable ATP analog AMP‐PNP. These findings corroborate previous suggestions that CFTR pore properties can vary with the nature of the nucleotide interaction. In conclusion, our data demonstrate that GSH flux is an intrinsic function of CFTR and prompt future examination of the role of this function in airway biology in health and disease.


Journal of Biological Chemistry | 2012

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Potentiator VX-770 (Ivacaftor) Opens the Defective Channel Gate of Mutant CFTR in a Phosphorylation-dependent but ATP-independent Manner

Paul D. W. Eckford; Canhui Li; Mohabir Ramjeesingh; Christine E. Bear

Background: VX-770 (ivacaftor), approved for therapy in CF patients bearing the G551D mutation, has an unknown mode of action. Results: Potentiation of purified WT and mutant CFTR by VX-770 did not require the normal activating ligand ATP. Conclusion: VX-770 binds WT and mutant CFTR channels directly to induce a nonconventional mode of gating. Significance: These findings will enable discovery of the VX-770-binding site. The cystic fibrosis transmembrane conductance regulator (CFTR) acts as a channel on the apical membrane of epithelia. Disease-causing mutations in the cystic fibrosis gene can lead to CFTR protein misfolding as in the case of the F508del mutation and/or channel dysfunction. Recently, a small molecule, VX-770 (ivacaftor), has shown efficacy in restoring lung function in patients bearing the G551D mutation, and this has been linked to repair of its channel gating defect. However, these studies did not reveal the mechanism of action of VX-770 in detail. Normally, CFTR channel activity is regulated by phosphorylation, ATP binding, and hydrolysis. Hence, it has been hypothesized that VX-770 modifies one or more of these metabolic events. In this study, we examined VX-770 activity using a reconstitution system for purified CFTR protein, a system that enables control of known regulatory factors. We studied the consequences of VX-770 interaction with CFTR incorporated in planar lipid bilayers and in proteoliposomes, using a novel flux-based assay. We found that purified and phosphorylated CFTR was potentiated in the presence of Mg-ATP, suggesting that VX-770 bound directly to the CFTR protein, rather than associated kinases or phosphatases. Interestingly, we also found that VX-770 enhanced the channel activity of purified and mutant CFTR in the nominal absence of Mg-ATP. These findings suggest that VX-770 can cause CFTR channel opening through a nonconventional ATP-independent mechanism. This work sets the stage for future studies of the structural properties that mediate CFTR gating using VX-770 as a probe.


Journal of Biological Chemistry | 1996

Purified Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Does Not Function as an ATP Channel

Canhui Li; Mohabir Ramjeesingh; Christine E. Bear

The gene mutated in cystic fibrosis codes for the cystic fibrosis transmembrane conductance regulator (CFTR). Previously, we provided definitive evidence that CFTR functions as a phosphorylation-regulated chloride channel in our planar lipid bilayer studies of the purified, reconstituted protein. Recent patch-clamp studies have lead to the suggestion that CFTR may also be capable of conducting ATP or inducing this function in neighboring channels. In the present study, we assessed the ATP channel activity of purified CFTR and found that the purified protein does not function as an ATP channel in planar bilayer studies of single channel activity nor in ATP flux measurements in proteoliposomes. Hence, CFTR does not possess intrinsic ATP channel activity and its putative role in cellular ATP transport may be indirect.


Journal of Biological Chemistry | 2001

ClC-2 Contributes to Native Chloride Secretion by a Human Intestinal Cell Line, Caco-2

Raha Mohammad-Panah; Katalin Gyömörey; Johanna M. Rommens; Monideepa Choudhury; Canhui Li; Yanchun Wang; Christine E. Bear

It has been previously determined that ClC-2, a member of the ClC chloride channel superfamily, is expressed in certain epithelial tissues. These findings fueled speculation that ClC-2 can compensate for impaired chloride transport in epithelial tissues affected by cystic fibrosis and lacking the cystic fibrosis transmembrane conductance regulator. However, direct evidence linking ClC-2 channel expression to epithelial chloride secretion was lacking. In the present studies, we show that ClC-2 transcripts and protein are present endogenously in the Caco-2 cell line, a cell line that models the human small intestine. Using an antisense strategy we show that ClC-2 contributes to native chloride currents in Caco-2 cells measured by patch clamp electrophysiology. Antisense ClC-2-transfected monolayers of Caco-2 cells exhibited less chloride secretion (monitored as iodide efflux) than did mock transfected monolayers, providing the first direct molecular evidence that ClC-2 can contribute to chloride secretion by the human intestinal epithelium. Further, examination of ClC-2 localization by confocal microscopy revealed that ClC-2 contributes to secretion from a unique location in this epithelium, from the apical aspect of the tight junction complex. Hence, these studies provide the necessary rationale for considering ClC-2 as a possible therapeutic target for diseases affecting intestinal chloride secretion such as cystic fibrosis.


Molecular Pharmacology | 2009

A Small-Molecule Modulator Interacts Directly with ΔPhe508-CFTR to Modify Its ATPase Activity and Conformational Stability

Leigh Wellhauser; Patrick Kim Chiaw; Stan Pasyk; Canhui Li; Mohabir Ramjeesingh; Christine E. Bear

The deletion of Phe-508 (ΔPhe508) constitutes the most prevalent of a number of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that cause cystic fibrosis (CF). This mutation leads to CFTR misfolding and retention in the endoplasmic reticulum, as well as impaired channel activity. The biosynthetic defect can be partially overcome by small-molecule “correctors”; once at the cell surface, small-molecule “potentiators” enhance the channel activity of ΔPhe508-CFTR. Certain compounds, such as VRT-532, exhibit both corrector and potentiator functions. In the current studies, we confirmed that the inherent chloride channel activity of ΔPhe508-CFTR (after biosynthetic rescue) is potentiated in studies of intact cells and membrane vesicles. It is noteworthy that we showed that the ATPase activity of the purified and reconstituted mutant protein is directly modulated by binding of VRT-532 [4-methyl-2-(5-phenyl-1H-pyrazol-3-yl)-phenol] ATP turnover by reconstituted ΔPhe508-CFTR is decreased by VRT-532 treatment, an effect that may account for the increase in channel open time induced by this compound. To determine whether the modification of ΔPhe508-CFTR function caused by direct VRT-532 binding is associated with structural changes, we evaluated the effect of VRT-532 binding on the protease susceptibility of the major mutant. We found that binding of VRT-532 to ΔPhe508-CFTR led to a minor but significant decrease in the trypsin susceptibility of the full-length mutant protein and a fragment encompassing the second half of the protein. These findings suggest that direct binding of this small molecule induces and/or stabilizes a structure that promotes the channel open state and may underlie its efficacy as a corrector of ΔPhe508-CFTR.


Molecular and Cellular Biology | 2008

Evidence for a Superoxide Permeability Pathway in Endosomal Membranes

Davis R. Mumbengegwi; Qiang Li; Canhui Li; Christine E. Bear; John F. Engelhardt

ABSTRACT The compartmentalized production of superoxide (·O2−) by endosomal NADPH oxidase is important in the redox-dependent activation of NF-κB following interleukin 1β (IL-1β) stimulation. It remains unclear how ·O2− produced within endosomes facilitates redox-dependent signaling events in the cytoplasm. We evaluated ·O2− movement out of IL-1β-stimulated endosomes and whether SOD1 at the endosomal surface mediates redox-signaling events required for NF-κB activation. The relative outward permeability of NADPH-dependent ·O2− from fractionated endosomes was assessed using membrane-permeable (luminol and lucigenin) and -impermeable (isoluminol) luminescent probes for ·O2−. In these studies, ∼60% of ·O2− efflux out of endosomes was inhibited by treatment with either of two anion channel blockers, 4′-diisothiocyano-2,2′-disulfonic acid stilbene (DIDS) or niflumic acid (NFA). Furthermore, radioisotopic electrodiffusion flux assays on endomembrane proteoliposomes suggested that ·O2− and Cl− are transported through the same DIDS-sensitive channel(s). Rab5-based immunoaffinity isolation of IL-1β-stimulated early endosomes demonstrated SOD1 recruitment to endosomes harboring the IL-1 receptor. Finally, SOD1-deficient cells were found to be defective in their ability to activate NF-κB following IL-1β stimulation. Together, these results suggest that ·O2− exits endosomes through a DIDS-sensitive chloride channel(s) and that SOD1-mediated dismutation of ·O2− at the endosomal surface may produce the localized H2O2 required for redox-activation of NF-κB.


Journal of Biological Chemistry | 2008

Probing Structure-Function Relationships and Gating Mechanisms in the CorA Mg2+ Transport System

Jian Payandeh; Canhui Li; Mohabir Ramjeesingh; Ewa Poduch; Christine E. Bear; Emil F. Pai

Recent crystal structures of the CorA Mg2+ transport protein from Thermotoga maritima (TmCorA) revealed an unusually long ion pore putatively gated by hydrophobic residues near the intracellular end and by universally conserved asparagine residues at the periplasmic entrance. A conformational change observed in an isolated funnel domain structure also led to a proposal for the structural basis of gating. Because understanding the molecular mechanisms underlying ion channel and transporter gating remains an important challenge, we have undertaken a structure-guided engineering approach to probe structure-function relationships in TmCorA. The intracellular funnel domain is shown to constitute an allosteric regulatory module that can be engineered to promote an activated or closed state. A periplasmic gate centered about a proline-induced kink of the pore-lining helix is described where “helix-straightening” mutations produce a dramatic gain-of-function. Mutation to the narrowest constriction along the pore demonstrates that a hydrophobic gate is operational within this Mg2+-selective transport protein and likely forms an energetic barrier to ion flux. We also provide evidence that highly conserved acidic residues found in the short periplasmic loop are not essential for TmCorA function or Mg2+ selectivity but may be required for proper protein folding and stability. This work extends our gating model for the CorA-Alr1-Mrs2 superfamily and reveals features that are characteristic of an ion channel. Aspects of these results that have broader implications for a range of channel and transporter families are highlighted.


Chemistry & Biology | 2014

VX-809 and Related Corrector Compounds Exhibit Secondary Activity Stabilizing Active F508del-CFTR after Its Partial Rescue to the Cell Surface

Paul D. W. Eckford; Mohabir Ramjeesingh; Steven Molinski; Stan Pasyk; Johanna F. Dekkers; Canhui Li; Saumel Ahmadi; Wan Ip; Timothy Chung; Kai Du; Herman Yeger; Jeffrey M. Beekman; Tanja Gonska; Christine E. Bear

The most common mutation causing cystic fibrosis (CF), F508del, impairs conformational maturation of CF transmembrane conductance regulator (CFTR), thereby reducing its functional expression on the surface of epithelia. Corrector compounds including C18 (VRT-534) and VX-809 have been shown to partially rescue misfolding of F508del-CFTR and toxa0enhance its maturation and forward trafficking to the cell surface. Now, we show that there is an additional action conferred by these compounds beyond their role in improving the biosynthetic assembly. Inxa0vitro studies show that these compounds bind directly to the metastable, full-length F508del-CFTR channel. Cell culture and patient tissue-based assays confirm that in addition to their cotranslational effect on folding, certain corrector compounds bind to the full-length F508del-CFTR after its partial rescue to the cell surface to enhance its function. These findings may inform the development of alternative compounds with improved therapeutic efficacy.

Collaboration


Dive into the Canhui Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge