Cao-Thang Dinh
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cao-Thang Dinh.
Nature Catalysis | 2018
Phil De Luna; Rafael Quintero-Bermudez; Cao-Thang Dinh; Michael B. Ross; Oleksandr S. Bushuyev; Petar Todorović; Tom Regier; Shana O. Kelley; Peidong Yang; Edward H. Sargent
The reduction of carbon dioxide to renewable fuels and feedstocks offers opportunities for large-scale, long-term energy storage. The synthesis of efficient CO2 reduction electrocatalysts with high C2:C1 selectivity remains a field of intense interest. Here we present electro-redeposition, the dissolution and redeposition of copper from a sol–gel, to enhance copper catalysts in terms of their morphology, oxidation state and consequent performance. We utilized in situ soft X-ray absorption spectroscopy to track the oxidation state of copper under CO2 reduction conditions with time resolution. The sol–gel material slows the electrochemical reduction of copper, enabling control over nanoscale morphology and the stabilization of Cu+ at negative potentials. CO2 reduction experiments, in situ X-ray spectroscopy and density functional theory simulations revealed the beneficial interplay between sharp morphologies and Cu+ oxidation state. The catalyst exhibits a partial ethylene current density of 160 mA cm–2 (−1.0 V versus reversible hydrogen electrode) and an ethylene/methane ratio of 200.Catalysts that can selectively reduce carbon dioxide to C2+ products are attractive for the generation of more complex and useful chemicals. Here, an electro-redeposited copper catalyst is shown to provide excellent selectivity and high current density for ethylene formation. Detailed characterization and theory link the performance to the catalyst morphology.
Science | 2018
Cao-Thang Dinh; Thomas Burdyny; Golam Kibria; Ali Seifitokaldani; Christine M. Gabardo; F. Pelayo García de Arquer; Amirreza Kiani; Jonathan P. Edwards; Phil De Luna; Oleksandr S. Bushuyev; Chengqin Zou; Rafael Quintero-Bermudez; Yuanjie Pang; David Sinton; Edward H. Sargent
A very basic pathway from CO2 to ethylene Ethylene is an important commodity chemical for plastics. It is considered a tractable target for synthesizing renewably from carbon dioxide (CO2). The challenge is that the performance of the copper electrocatalysts used for this conversion under the required basic reaction conditions suffers from the competing reaction of CO2 with the base to form bicarbonate. Dinh et al. designed an electrode that tolerates the base by optimizing CO2 diffusion to the catalytic sites (see the Perspective by Ager and Lapkin). This catalyst design delivers 70% efficiency for 150 hours. Science, this issue p. 783; see also p. 707 Electrode design facilitates reductive coupling of CO2 to ethylene under otherwise inhibitory strongly basic conditions. Carbon dioxide (CO2) electroreduction could provide a useful source of ethylene, but low conversion efficiency, low production rates, and low catalyst stability limit current systems. Here we report that a copper electrocatalyst at an abrupt reaction interface in an alkaline electrolyte reduces CO2 to ethylene with 70% faradaic efficiency at a potential of −0.55 volts versus a reversible hydrogen electrode (RHE). Hydroxide ions on or near the copper surface lower the CO2 reduction and carbon monoxide (CO)–CO coupling activation energy barriers; as a result, onset of ethylene evolution at −0.165 volts versus an RHE in 10 molar potassium hydroxide occurs almost simultaneously with CO production. Operational stability was enhanced via the introduction of a polymer-based gas diffusion layer that sandwiches the reaction interface between separate hydrophobic and conductive supports, providing constant ethylene selectivity for an initial 150 operating hours.
Small | 2016
Xueli Zheng; Cao-Thang Dinh; F. Pelayo García de Arquer; Bo Zhang; Min Liu; Oleksandr Voznyy; Yiying Li; Gordon Knight; Sjoerd Hoogland; Zheng-Hong Lu; Xi-Wen Du; Edward H. Sargent
TiO2 has excellent electrochemical properties but limited solar photocatalytic performance in light of its large bandgap. One important class of visible-wavelength sensitizers of TiO2 is based on ZnFe2 O4 , which has shown fully a doubling in performance relative to pure TiO2 . Prior efforts on this important front have relied on presynthesized nanoparticles of ZnFe2 O4 adsorbed on a TiO2 support; however, these have not yet achieved the full potential of this system since they do not provide a consistently maximized area of the charge-separating heterointerface per volume of sensitizing absorber. A novel atomic layer deposition (ALD)-enhanced synthesis of sensitizing ZnFe2 O4 leaves grown on the trunks of TiO2 trees is reported. These new materials exhibit fully a threefold enhancement in photoelectrochemical performance in water splitting compared to pristine TiO2 under visible illumination. The new materials synthesis strategy relies first on the selective growth of FeOOH nanosheets, 2D structures that shoot off from the sides of the TiO2 trees; these templates are then converted to ZnFe2 O4 with the aid of a novel ALD step, a strategy that preserves morphology while adding the Zn cation to achieve enhanced optical absorption and optimize the heterointerface band alignment.
Applied Physics Letters | 2016
Amirreza Kiani; Brandon R. Sutherland; Younghoon Kim; Olivier Ouellette; Larissa Levina; Grant Walters; Cao-Thang Dinh; Mengxia Liu; Oleksandr Voznyy; Xinzheng Lan; André J. Labelle; Alexander H. Ip; Andrew H. Proppe; Ghada H. Ahmed; Omar F. Mohammed; Sjoerd Hoogland; Edward H. Sargent
Semiconductors with bandgaps in the near- to mid-infrared can harvest solar light that is otherwise wasted by conventional single-junction solar cell architectures. In particular, colloidal quantum dots (CQDs) are promising materials since they are cost-effective, processed from solution, and have a bandgap that can be tuned into the infrared (IR) via the quantum size effect. These characteristics enable them to harvest the infrared portion of the solar spectrum to which silicon is transparent. To date, IR CQD solar cells have been made using a wasteful and complex sequential layer-by-layer process. Here, we demonstrate ∼1 eV bandgap solar-harvesting CQD films deposited in a single step. By engineering a fast-drying solvent mixture for metal iodide-capped CQDs, we deposited active layers greater than 200 nm in thickness having a mean roughness less than 1 nm. We integrated these films into infrared solar cells that are stable in air and exhibit power conversion efficiencies of 3.5% under illumination by t...
Green Chemistry | 2017
Yuanjie Pang; Thomas Burdyny; Cao-Thang Dinh; Golam Kibria; James Z. Fan; Min Liu; Edward H. Sargent; David Sinton
Electrochemical ethylene production rates are enhanced by pushing favourable local electrolyte conditions to occur at higher current densities and lower relative overpotentials. In particular the combined influences of electrode morphology and buffering on electrode pH and CO2 conditions are assessed.
Journal of the American Chemical Society | 2018
Ali Seifitokaldani; Christine M. Gabardo; Thomas Burdyny; Cao-Thang Dinh; Jonathan P. Edwards; Golam Kibria; Oleksandr S. Bushuyev; Shana O. Kelley; David Sinton; Edward H. Sargent
Over a broad range of operating conditions, many CO2 electroreduction catalysts can maintain selectivity toward certain reduction products, leading to materials and surfaces being categorized according to their products; here we ask, is product selectivity truly a property of the catalyst? Silver is among the best electrocatalysts for CO in aqueous electrolytes, where it reaches near-unity selectivity. We consider the hydrogenations of the oxygen and carbon atoms via the two proton-coupled-electron-transfer processes as chief determinants of product selectivity; and find using density functional theory (DFT) that the hydronium (H3O+) intermediate plays a key role in the first oxygen hydrogenation step and lowers the activation energy barrier for CO formation. When this hydronium influence is removed, the activation energy barrier for oxygen hydrogenation increases significantly, and the barrier for carbon hydrogenation is reduced. These effects make the formate reaction pathway more favorable than CO. Experimentally, we then carry out CO2 reduction in highly concentrated potassium hydroxide (KOH), limiting the hydronium concentration in the aqueous electrolyte. The product selectivity of a silver catalyst switches from entirely CO under neutral conditions to over 50% formate in the alkaline environment. The simulated and experimentally observed selectivity shift provides new insights into the role of hydronium on CO2 electroreduction processes and the ability for electrolyte manipulation to directly influence transition state (TS) kinetics, altering favored CO2 reaction pathways. We argue that selectivity should be considered less of an intrinsic catalyst property, and rather a combined product of the catalyst and reaction environment.
Advanced Materials | 2017
Yi Tian; Francisco Pelayo García de Arquer; Cao-Thang Dinh; Gael Favraud; Marcella Bonifazi; Jun Li; Min Liu; Xixiang Zhang; Xueli Zheng; Md. Golam Kibria; Sjoerd Hoogland; David Sinton; Edward H. Sargent; Andrea Fratalocchi
The direct conversion of solar energy into fuels or feedstock is an attractive approach to address increasing demand of renewable energy sources. Photocatalytic systems relying on the direct photoexcitation of metals have been explored to this end, a strategy that exploits the decay of plasmonic resonances into hot carriers. An efficient hot carrier generation and collection requires, ideally, their generation to be enclosed within few tens of nanometers at the metal interface, but it is challenging to achieve this across the broadband solar spectrum. Here the authors demonstrate a new photocatalyst for hydrogen evolution based on metal epsilon-near-zero metamaterials. The authors have designed these to achieve broadband strong light confinement at the metal interface across the entire solar spectrum. Using electron energy loss spectroscopy, the authors prove that hot carriers are generated in a broadband fashion within 10 nm in this system. The resulting photocatalyst achieves a hydrogen production rate of 9.5 µmol h-1 cm-2 that exceeds, by a factor of 3.2, that of the best previously reported plasmonic-based photocatalysts for the dissociation of H2 with 50 h stable operation.
RSC Advances | 2017
Chinh-Chien Nguyen; Cao-Thang Dinh; Trong-On Do
Sunlight-driven photocatalysis has emerged as a potential technology to address organic pollutant issues. Here, we report the first Rh-doped hollow-structured TiO2 photocatalyst, which is highly active in the photocatalytic decomposition of organic pollutants under solar light. We achieved this by introducing Sr2+ as a co-doping agent, which stabilized the hollow structure at high temperatures and enabled us to control the oxidation state of Rh. The designed photocatalyst exhibited strong visible light absorption (up to 600 nm), and a very high surface area (up to 140 m2 g−1). As a result, the Sr/Rh-doped TiO2 hollow photocatalysts demonstrated a photocatalytic efficiency (PE) of 0.242%, which was at least 8 times higher than that of commercial TiO2 (0.03%) and 25 times higher than that of bulk Sr/Rh–TiO2 (0.01%), in the photocatalytic decomposition of isopropanol under solar light irradiation.
Journal of the American Chemical Society | 2018
Dae-Hyun Nam; Oleksandr S. Bushuyev; Jun Li; Phil De Luna; Ali Seifitokaldani; Cao-Thang Dinh; F. Pelayo García de Arquer; Yuhang Wang; Zhiqin Liang; Andrew H. Proppe; Chih Shan Tan; Petar Todorović; Osama Shekhah; Christine M. Gabardo; Jea Woong Jo; Jongmin Choi; Min-Jae Choi; Se-Woong Baek; Junghwan Kim; David Sinton; Shana O. Kelley; Mohamed Eddaoudi; Edward H. Sargent
The electrochemical carbon dioxide reduction reaction (CO2RR) produces diverse chemical species. Cu clusters with a judiciously controlled surface coordination number (CN) provide active sites that simultaneously optimize selectivity, activity, and efficiency for CO2RR. Here we report a strategy involving metal-organic framework (MOF)-regulated Cu cluster formation that shifts CO2 electroreduction toward multiple-carbon product generation. Specifically, we promoted undercoordinated sites during the formation of Cu clusters by controlling the structure of the Cu dimer, the precursor for Cu clusters. We distorted the symmetric paddle-wheel Cu dimer secondary building block of HKUST-1 to an asymmetric motif by separating adjacent benzene tricarboxylate moieties using thermal treatment. By varying materials processing conditions, we modulated the asymmetric local atomic structure, oxidation state and bonding strain of Cu dimers. Using electron paramagnetic resonance (EPR) and in situ X-ray absorption spectroscopy (XAS) experiments, we observed the formation of Cu clusters with low CN from distorted Cu dimers in HKUST-1 during CO2 electroreduction. These exhibited 45% C2H4 faradaic efficiency (FE), a record for MOF-derived Cu cluster catalysts. A structure-activity relationship was established wherein the tuning of the Cu-Cu CN in Cu clusters determines the CO2RR selectivity.
Energy and Environmental Science | 2018
Christine M. Gabardo; Ali Seifitokaldani; Jonathan P. Edwards; Cao-Thang Dinh; Thomas Burdyny; Golam Kibria; Colin P. O’Brien; Edward H. Sargent; David Sinton
The electroreduction of carbon dioxide (CO2) to carbon monoxide (CO) is a promising strategy to utilize CO2 emissions while generating a high value product. Commercial CO2 electroreduction systems will require high current densities (>100 mA cm−2) as well as improved energetic efficiencies (EEs), achieved via high CO selectivity and lowered applied potentials. Here we report a silver (Ag)-based system that exhibits the lowest overpotential among CO2-to-CO electrolyzers operating at high current densities, 300 mV at 300 mA cm−2, with near unity selectivity. We achieve these improvements in voltage efficiency and selectivity via operation in a highly alkaline reaction environment (which decreases overpotentials) and system pressurization (which suppresses the generation of alternative CO2 reduction products), respectively. In addition, we report a new record for the highest half-cell EE (>80%) for CO production at 300 mA cm−2.