Cao Xuebing
Huazhong University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cao Xuebing.
Journal of Huazhong University of Science and Technology-medical Sciences | 2004
Li Gang; Sun Shenggang; Cao Xuebing; Zhong Jiangxin; Tong E-tang
SummaryIn order to investigate the neurotoxicity of lipopolysaccharide (LPS) on the dopaminergic neurons of substantia nigra and the pathogenesis of Parkinson disease. LPS was stereotaxically infused into substantia nigra (SN). At different dosages and different time points with 5 μg LPS, the damage of the dopaminergic neurons in SN was observed by using tyrosine-hydroxylase (TH) immunohistochemical staining. The results showed that 14 days after injection of 0.1 μg to 10 μg LPS into the rat SN, TH-positive (TH+) neurons in the SN were decreased by 5%, 15%, 20%, 45%, 96% and 99% respectively. After injection of 5 μg LPS, as compared with the control groups, TH+ neurons began to decrease at 3rd day and obviously decrease at 14th day, only 5% of total cells, and almost disappeared 30 days later. The results suggested that LPS could induce the degeneration of dopaminergic neurons in the SN in a dose- and time-dependent manner.
Journal of Huazhong University of Science and Technology-medical Sciences | 2005
Li Luoqing; Sun Shenggang; Cao Xuebing; Wang Yun-fu; Chang Liying; Yin Xiaoping
SummaryTo investigate the effect of immature dendritic cells (iDCs) on experimental autoimmune myasthenia gravis (MG), iDCs were generated in low dose of GM-CSF, and then they were pulsed with acetylcholine receptor (AchR) and transferred to allogeneic rats. After 3 weeks, all rats were immunized with AchR and complete Freund’s adjuvant (CFA) and observed for the corresponding indices of MG for 7 weeks. Our results showed that compared with mature DCs (mDCs) generated at high dose of GM-CSF plus additional stimulation by lipopolysaccharide, iDCs expressed significantly lower levels of MHC-II, CD80 and CD86, and their ability to uptake FITC-Dextran was stronger but the ability of stimulating proliferation of allogeneic T cells were weaker. Like controls, after immunization, all rats transferred with iDCs, mDCs and AchR-pulsed mDCs showed typical symptoms in 4 to 7 weeks. The amplitude of electromyogram wave dropped obviously, the level of serum AchRab increased and neuromuscular junction showed typical damage of MG. In contrast, no conspicuous changes were noted in rats transferred with AchR-pulsed iDCs. The results suggest that iDCs could be generated by inducing bone marrow precursors in low dose of GM-CSF, AchR-pulsed iDCs could induce tolerance of EAMG. The dysfunction of DCs may play an important role in the initiation and maintenance of normal immune response in MG.
Journal of Huazhong University of Science and Technology-medical Sciences | 2003
Sun Shenggang; Cao Xuebing
SummaryTo study behavioral character and changes of neuronal activity in the basal ganglia of rat model of levodopa-induced dyskinesia, unilateral 6-hydroxydopamine lesioned rat model of Parkinson disease (PD) was treated with levodopa/benserazide twice daily for 4 weeks and the behavior observed on the 1st, 3rd, 4th, 7th, 9th, 10th, 14th, 21st and 28th day. The animals were sacrificed and immunohistochemical technique was used to measure the changes of Fos expression in the caudate putamen (CPU), globus pallidus (GP) and sensorimotor area of cerebral cortex 2 h after the last treatment. The results showed that pulsatile treatment with a subthreshold dose of levodopa gradually induced abnormal involuntary movement (AIM), including stereotypy (limb dyskinesia, axial dystonia and masticatory dyskinesia) towards the side contralateral to the dopamine-denervated striatum and increased contraversive rotation. The motor pattern of each subtype was highly stereotypic across individual rats, and the proportion of each subtype was not consistent among individual rats. Fos positive nuclei in the CPU and GP were increased by levodopa acute administration, and more remarkably in the CPU, but not in the cerebral cortex. After repeated levodopa treatment, Fos positive nuclei were reduced remarkably in the CPU, but were increased in the GP and cerebral cortex. It was concluded that the neural mechanisms underlying levodopa induced AIM in rat model of PD was very similar to those seen in levodopa-induced dyskinesia (LID) in PD patients and MPTP-lesioned monkeys, and increased striatopallidal neuronal activity might be involved in occurrence of LID.
Journal of Huazhong University of Science and Technology-medical Sciences | 2004
Guan Jingxia; Sun Shenggang; Cao Xuebing; Chen Zhibin (陈志斌)
SummaryIn order to explore the PAR-1 mRNA and protein expression around hemotoma following intracerebral hemorrhage and the relation between the PAR-1 expression and thrombin, collagenase VII was stereotaxically injected into right caudate nucleus in rats. The PAR-1 mRNA expression was detected by RT-PCR method and the PAR-1 protein expression by immunohistochemical method respectively. It was found that the PAR-1 mRNA and protein expression around hemotoma was increased at 6 h after intracerebral hemorrhage (P<0.05), peaked at 2 days (P<0.01), and then declined. The change pattern of the PAR-1 mRNA and protein expression was similar to that of intracerebral hemorrhage after thrombin intracerebral injection. The PAR-1 mRNA and protein expression in hirudin group showed no significant, difference with control group. These results indicated that the PAR-1 mRNA and protein expression were markedly increased after intracerebral hemorrhage, which may be closely related to thrombin. Upregulation of the PAR-1 expression may involve in neurotoxic injury induced by thrombin.
Journal of Huazhong University of Science and Technology-medical Sciences | 2003
Wang Tao; Liang Zhihou; Sun Shenggang; Cao Xuebing; Peng Hai; Cao Fei; Liu Hongjin; Tong E-tang
SummaryTo investigate the distribution of possible novel mutations from parkin gene in variant subset of patients with Parkinson’s disease (PD) in China and explore whether parkin gene plays an important role in the pathogenesis of PD, 70 patients were divided into early-onset group and late-onset group; 70 healthy subjects were included as controls. Genomic DNA from 70 normal controls and from those of PD patients were extracted from peripheral blood leukocytes by using standard procedures. Mutations of parkin gene (exon 1–12) in all the subjects were screened by PCR-single strand conformation polymorphism (SSCP), and further sequencing was performed in the samples with abnormal SSCP results, in order to confirm the mutation and its location. A new missense mutation Gly284Arg in a patient and 3 abnormal bands in SSCP electrophoresis from samples of another 3 patients were found. All the DNA variants were sourced from the samples of the patients with early-onset PD. It was concluded that Parkin point mutation also partially contributes to the development of early-onset Parkinson’s disease in Chinese.
Journal of Huazhong University of Science and Technology-medical Sciences | 2004
Wang Tao; Liang Zhihou; Sun Shenggang; Cao Xuebing; Peng Hai; Liu Hongjin; Tong E-tang
SummaryMutations in the parkin gene have recently been identified in familial and isolated patients with early-onset Parkinson disease (PD) and that subregions between exon 2 and 4 of the parkin gene are hot spots of deletive mutations. To study the distribution of deletions in the parkin gene among variant subset patients with PD in China, and to explore the role of parkin gene in the pathogenesis of PD, 63 patients were divided into early onset and later onset groups. Exons 1–12 were amplified by PCR, templated by the genomic DNA of patients, and then the deletion distribution detected by agarose electrophoresis. Four patients were found to be carrier of exon deletions in 63 patients with PD. The location of the deletion was on exon 2 (1 case), exon 3 (2 cases) and exon 4 (1 case). All patients were belong to the group of early onset PD. The results showed that parkin gene deletion on exon 2, exon 3 and exon 4 found in Chinese population contributes partly to early onset PD.
Journal of Huazhong University of Science and Technology-medical Sciences | 2006
Chen Zhibin (陈志斌); Guan Qiang (맜强); Cao Xuebing; Wang Lan; Sun Shenggang
The effects of antisense FosB and CREB intra-striatum injection on the expression of prodynorphin (PDyn) gene in striatal neurons of Levodopa-induced dyskinesias (LID) rats with Parkinson disease (PD) were explored. PD model in rats was established by 6-OHDA microinjection stereotaxically. The rats were treated with chronic intermittent Levodopa celiac injection for 28 days to get the LID rats. Antisense FosB and cAMP response element-binding protein (CREB) were injected into striatum of all rats respectively. In situ hybridization was used to measure the changes in the expression of PDyn mRNA in striatum and behavior changes were observed. The results showed after administration of antisense FosB, abnormal involuntary movement (AIM) was decreased and the expression of PDyn mRNA in striatum was increased in LID rats as compared with sense FosB group (P<0.01, respectively). As compared with the control group, the expression of PDyn mRNA in striatum was decreased by antisense CREB-treated LID group (P<0.01) and compared with sense CREB treated LID group, antisense CREB-treated LID group showed no changes in AIM scores and the expressions of PDyn mRNA (both P>0.05). In conclusion, FosB protein, which replaced the CREG, could regulate the expression of PDyn mRNA and play critical role in the pathogenesis of LID.
Journal of Huazhong University of Science and Technology-medical Sciences | 2002
Cao Xuebing; Sun Shenggang; Tong E-tang
SummaryTo observe the effects of heterograft of glomus cells of carotid body on hemiparkinsonian rat models, rats with unilateral 6-hydroxydopamine (6-OHDA)-induced lesions of the right dopaminergic neurons of substantia nigra received intrastriatal glomus cells heterograft. Apomorphine-induced rotation was monitored for 30 min at various time points after grafting. The striata were cut and examined for dopamine content by HPLC and for immunohistochemical staining of tyrosine hydroxylase positive neurons (TH+) at the end of the experiments. The results showed that apomorphine-induced rotational behavior was significantly reduced for 12 weeks and the dopamine contents were significantly elevated after grafting (P<0.01), and TH+ cells survived better. The present study demonstrates that intrastriatal heterograft of glomus cells within carotid body in rats with 6-OHDA-elicited lesions could reduce apomorphine-induced rotational behavior and elevate the dopamine contents and numbers of TH+ cell surviving within striatum, and can serve as a new and effective alternative for Parkinson disease.
Journal of Huazhong University of Science and Technology-medical Sciences | 2003
Cao Xuebing; Sun Shenggang; Liu Hongtao; Tong E’tang; Xia Huisheng
To investigate the changes in the expression of basic fibroblast growth factor (bFGF) and transforming growth factor beta 2 (TGFbeta2) in glomus cell grafts of carotid body in the rat model of 6-hydroxydopamine-induced Parkinson disease, immunohistochemical staining of bFGF and TGFbeta2 in the sections of striate body was done on the 2nd, 4th and 12th week after transplantation. The results showed that on the 2nd week after transplantation, bFGF and TGFbeta2 were not detectable in the glumous cell grafts. On the 4th week after graft, bFGF and TGFbeta2 immunoreactivity was increased within the grafts and at the graft-host interface but was restricted only to astrocytes. In the striatum surrounding the graft, bFGF was expressed persistently, while TGFbeta2 showed transient expression. It was suggested that the transient expression of TGFbeta2 was likely due more to the trauma imposed by the graft procedure than to an intrinsic. The deficiency in astrocytic bFGF early after graft may be responsible for the poor survival of grafted glomus cells of carotid body.SummaryTo investigate the changes in the expression of basic fibroblast growth factor (bFGF) and transforming growth factor beta 2 (TGF32) in glomus cell grafts of carotid body in the rat model of 6-hydroxydopamine-induced Parkinson disease, immunohistochemical staining of bFGF and TGFβ2 in the sections of striate body was done on the 2nd, 4th and 12th week after transplantation. The results showed that on the 2nd week after transplantation, bFGF annd TGFβ2 were not detectable in the glumous cell grafts. On the 4th week after graft, bFGF and TGFβ2 immunoreactivity was increased within the grafts and at the graft-host interface but was restricted only to astrocytes. In the striatum surrounding the graft, bFGF was expressed persistently, while TGFβ2 showed transient expression. It was suggested that the transient expression of TGFβ2 was likely due more to the trauma imposed by the graft procedure than to an intrinsic. The deficiency in astrocytic bFGF early after graft may be responsible for the poor survival of grafted glomus cells of carotid body.
Journal of Tongji Medical University | 2001
Chen Ji-xiang; Cao Xuebing; Sun Shenggang
SummaryTo investigate the serum substantia nigra neuron autoantibody and its effect in the patients with Parkinson disease (PD), substantia nigra slices and a rat model of injection of serum from PD patients in unilateral side substantia nigra were applied. The results showed that the positive rate of substantia nigra neuron autoantibody in PD patients was significantly higher than in the healthy control group (36. 67 % vs 6. 67 %,P<0. 01), but no significant difference was found between PD group and myasthenia gravis (MG) group (26. 67 %,P>0. 05). The sera from PD patients positive for substantia nigra neuron autoantibody could decrease the number of the dopaminergic neurons more seriously than those from MG and the healthy once respectively (bothP<0. 01). The results suggested that the immunological mechanism might partly play a role in the development of PD.