Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cara A. C. Leckey is active.

Publication


Featured researches published by Cara A. C. Leckey.


Ultrasonics | 2013

Characterization of impact damage in composite laminates using guided wavefield imaging and local wavenumber domain analysis.

Matthew D. Rogge; Cara A. C. Leckey

Delaminations in composite laminates resulting from impact events may be accompanied by minimal indication of damage at the surface. As such, inspections are required to ensure defects are within allowable limits. Conventional ultrasonic scanning techniques have been shown to effectively characterize the size and depth of delaminations but require physical contact with the structure and considerable setup time. Alternatively, a non-contact scanning laser vibrometer may be used to measure guided wave propagation in the laminate structure generated by permanently bonded transducers. A local Fourier domain analysis method is presented for processing guided wavefield data to estimate spatially dependent wavenumber values, which can be used to determine delamination depth. The technique is applied to simulated wavefields and results are analyzed to determine limitations of the technique with regards to determining defect size and depth. Based on simulation results, guidelines for application of the technique are developed. Finally, experimental wavefield data is obtained in quasi-isotropic carbon fiber reinforced polymer (CFRP) laminates with impact damage. The recorded wavefields are analyzed and wavenumber is measured to an accuracy of up to 8.5% in the region of shallow delaminations. These results show the promise of local wavenumber domain analysis to characterize the depth of delamination damage in composite laminates. The technique can find application in automated vehicle health assurance systems with potential for high detection rates and greatly reduced operator effort and setup time.


Ultrasonics | 2014

Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment.

Cara A. C. Leckey; Matthew D. Rogge; F. Raymond Parker

Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed.


Journal of Intelligent Material Systems and Structures | 2015

Delamination detection and quantification on laminated composite structures with Lamb waves and wavenumber analysis

Zhenhua Tian; Lingyu Yu; Cara A. C. Leckey

Laminated composites are susceptible to delamination due to their weak transverse tensile and interlaminar shear strengths as compared to their in-plane properties. Delamination damage can occur internally, where it is not visible to the naked eye. Development of reliable, quantitative techniques for detecting delamination damage in laminated composite components will be imperative for safe and functional optimally designed next-generation composite structures. In this article, we study the potential of using Lamb waves for delamination detection and quantification, using model-assisted data acquisition. Novel wavenumber analysis approaches are developed and discussed to show how they can be used to investigate Lamb wave interactions with delaminated plies. Ultrasonic wave simulations are implemented to provide both in-plane and out-of-plane wave motion for the wavenumber studies. The out-of-plane results are verified against data obtained from experimental tests. It is found that the wavenumber methods can not only determine the delaminated region of the plate and its length, but can also identify the plies between which the delamination occurs. We envision that the wavenumber approaches can lead to a complete delamination quantification in the future.


Ultrasonics | 2012

Multiple-mode Lamb wave scattering simulations using 3D elastodynamic finite integration technique.

Cara A. C. Leckey; Matthew D. Rogge; Corey A. Miller; Mark K. Hinders

We have implemented three-dimensional (3D) elastodynamic finite integration technique (EFIT) simulations to model Lamb wave scattering for two flaw-types in an aircraft-grade aluminum plate, a rounded rectangle flat-bottom hole and a disbond of the same shape. The plate thickness and flaws explored in this work include frequency-thickness regions where several Lamb wave modes exist and sometimes overlap in phase and/or group velocity. For the case of the flat-bottom hole the depth was incrementally increased to explore progressive changes in multiple-mode Lamb wave scattering due to the damage. The flat-bottom hole simulation results have been compared to experimental data and are shown to provide key insight for this well-defined experimental case by explaining unexpected results in experimental waveforms. For the rounded rectangle disbond flaw, which would be difficult to implement experimentally, we found that Lamb wave behavior differed significantly from the flat-bottom hole flaw. Most of the literature in this field is restricted to low frequency-thickness regions due to difficulties in interpreting data when multiple modes exist. We found that benchmarked 3D EFIT simulations can yield an understanding of scattering behavior for these higher frequency-thickness regions and in cases that would be difficult to set up experimentally. Additionally, our results show that 2D simulations would not have been sufficient for modeling the complicated scattering that occurred.


Journal of Intelligent Material Systems and Structures | 2013

Lamb wave–based quantitative crack detection using a focusing array algorithm

Lingyu Yu; Cara A. C. Leckey

Cracks are common defects in aluminum plate-like components that are in widespread use in aerospace, shipbuilding, and other industries. Ultrasonic detection using Lamb waves has proven to be an efficient method for crack detection and localization. However, quantitative information regarding crack size or orientation is of paramount importance for damage diagnosis and life prediction. In this article, employing a sparsely arranged piezoelectric sensor array, a quantitative crack detection and imaging approach using a Lamb wave–focusing array algorithm is developed and presented. Additionally, Lamb wave propagation on thin-wall plates and wave interaction with crack damage was studied using three-dimensional elastodynamic finite integration technique. The focusing array imaging algorithm was then developed and applied to both simulation and experimental data to generate intensity images of the structure under interrogation. Experimentally, wafer-type piezoelectric actuators/sensors are permanently installed on the testing structure to generate Lamb waves as well as to measure the waves propagating through the structures. Our results show that when applied to either experimental or simulated data, the focusing array algorithms yield images containing quantitative damage information. The results also demonstrate that three-dimensional elastodynamic finite integration technique can be used for future simulation-based investigations of sensing optimization for various damage scenarios.


Smart Materials and Structures | 2013

Study on crack scattering in aluminum plates with Lamb wave frequency?wavenumber analysis

Lingyu Yu; Cara A. C. Leckey; Zhenhua Tian

The multimodal characteristic of Lamb waves makes the interpretation of Lamb wave signals difficult in either the time or frequency domain. In this work, we present our study of Lamb wave propagation characterization and crack scattering using frequency–wavenumber analysis. The aim is to investigate three dimensional (3D) Lamb wave behavior in the presence of crack damage via the application of frequency–wavenumber analysis. The analysis techniques are demonstrated using simulation examples of an aluminum plate with a through-thickness crack. Both in-plane and out-of-plane components are acquired through a 3D elastodynamic finite integration technique (EFIT), while the out-of-plane component is also experimentally obtained using a scanning laser Doppler vibrometer for verification purposes. The time–space wavefield is then transformed to the frequency–wavenumber domain by a two dimensional (2D) Fourier transform and the out-of-plane EFIT results are compared to experimental measurements. The experimental and simulated results are found to be in close agreement. The frequency–wavenumber representation of in-plane and out-of-plane components shows clear distinction among various Lamb wave modes that are present. However, spatial information is lost during this 2D transformation. A short space 2D Fourier transform is therefore adopted to obtain the frequency–wavenumber spectra at various spatial locations, resulting in a space–frequency–wavenumber representation of the signal. The space–frequency–wavenumber analysis has shown its potential for indicating crack presence.


Structural Health Monitoring-an International Journal | 2015

Instantaneous and local wavenumber estimations for damage quantification in composites

Olivier Mesnil; Cara A. C. Leckey; Massimo Ruzzene

The continued and expanded use of composite materials in aerospace applications necessitates structural health monitoring and/or nondestructive evaluation techniques that can provide quantitative and detailed damage information for layered plate-like components (such as composite laminates). Guided wavefield methods are at the basis of a number of promising techniques for the detection and the characterization of damage in plate-like structures. Among the processing techniques that have been proposed for guided wavefield analysis, the estimation of instantaneous and local wavenumbers can lead to effective metrics that quantify the size and the depth of delaminations in composite laminates. This article reports the application of both instantaneous and local wavenumber damage quantification techniques to guided wavefield data for delaminated composite laminates. The techniques are applied to experimental data for a simple single delamination case and to simulated data for a more complex multi-ply delamination case. The two techniques are compared in terms of accuracy in damage characterization and computational demand. The proposed methodologies can be considered as steps toward a hybrid structural health monitoring/nondestructive evaluation approach for damage assessment in composites.


Smart Materials and Structures | 2016

Rapid guided wave delamination detection and quantification in composites using global-local sensing

Zhenhua Tian; Lingyu Yu; Cara A. C. Leckey

This paper presents a rapid guided ultrasonic wave inspection approach through global inspection by phased array beamforming and local damage evaluation via wavenumber analysis. The global-local approach uses a hybrid system consisting of a PZT wafer and a non-contact laser vibrometer. The overall inspection is performed in two steps. First, a phased array configured by a small number of measurements performs beamforming and beamsteering over the entire plate in order to detect and locate the presence of the damage. A local area is identified as target damage area for the second step. Then a high density wavefield measurement is taken over the target damage area and a spatial wavenumber imaging is performed to quantitatively evaluate the damage. The two-step inspection has been applied to locate and quantify impact-induced delamination damage in a carbon fiber reinforced polymer composite plate. The detected delamination location, size and shape agree well with those of an ultrasonic C-scan. For the test case studied in this work the global-local approach reduced the total composite inspection (damage detection and characterization) time by ~97% compared to using a full scan approach.


Ultrasonics | 2015

Multi-frequency local wavenumber analysis and ply correlation of delamination damage.

Peter D. Juarez; Cara A. C. Leckey

Wavenumber domain analysis through use of scanning laser Doppler vibrometry has been shown to be effective for non-contact inspection of damage in composites. Qualitative and semi-quantitative local wavenumber analysis of realistic delamination damage and quantitative analysis of idealized damage scenarios (Teflon inserts) have been performed previously in the literature. This paper presents a new methodology based on multi-frequency local wavenumber analysis for quantitative assessment of multi-ply delamination damage in carbon fiber reinforced polymer (CFRP) composite specimens. The methodology is presented and applied to a real world damage scenario (impact damage in an aerospace CFRP composite). The methodology yields delamination size and also correlates local wavenumber results from multiple excitation frequencies to theoretical dispersion curves in order to robustly determine the delamination ply depth. Results from the wavenumber based technique are validated against a traditional nondestructive evaluation method.


Smart Materials and Structures | 2015

Guided wave imaging for detection and evaluation of impact-induced delamination in composites

Zhenhua Tian; Lingyu Yu; Cara A. C. Leckey; Jeffrey P. Seebo

In this paper, guided wavefield interactions with delamination damage in laminated composite panels are investigated. The frequency–wavenumber representations of the guided wavefields show that different wavenumbers are present in the delaminated plate, compared to a pristine case. The wavenumbers are correlated to trapped waves in the delamination region. Novel approaches for imaging the composite panels using guided waves are discussed and demonstrated for quantitative evaluation of the delamination damage. A filter reconstruction imaging method is shown to provide a rapid technique to locate delamination damage by showing where guided wave energy is trapped. A spatial wavenumber-based imaging algorithm is applied to calculate wavenumber values at each spatial location and highlights the delamination damage as regions with larger wavenumber values. The imaging approaches are demonstrated using experimental data from a plate with a simulated delamination (teflon insert) and from a plate containing impact-induced delamination damage. The methods are also applied to a multiple mode guided wave case to demonstrate application to complex wave cases.

Collaboration


Dive into the Cara A. C. Leckey's collaboration.

Top Co-Authors

Avatar

Lingyu Yu

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Zhenhua Tian

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Massimo Ruzzene

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Olivier Mesnil

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge