Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cara J. Westmark is active.

Publication


Featured researches published by Cara J. Westmark.


PLOS Biology | 2007

FMRP mediates mGluR5-dependent translation of amyloid precursor protein.

Cara J. Westmark; James S. Malter

Amyloid precursor protein (APP) facilitates synapse formation in the developing brain, while beta-amyloid (Aβ) accumulation, which is associated with Alzheimer disease, results in synaptic loss and impaired neurotransmission. Fragile X mental retardation protein (FMRP) is a cytoplasmic mRNA binding protein whose expression is lost in fragile X syndrome. Here we show that FMRP binds to the coding region of APP mRNA at a guanine-rich, G-quartet–like sequence. Stimulation of cortical synaptoneurosomes or primary neuronal cells with the metabotropic glutamate receptor agonist DHPG increased APP translation in wild-type but not fmr-1 knockout samples. APP mRNA coimmunoprecipitated with FMRP in resting synaptoneurosomes, but the interaction was lost shortly after DHPG treatment. Soluble Aβ40 or Aβ42 levels were significantly higher in multiple strains of fmr-1 knockout mice compared to wild-type controls. Our data indicate that postsynaptic FMRP binds to and regulates the translation of APP mRNA through metabotropic glutamate receptor activation and suggests a possible link between Alzheimer disease and fragile X syndrome.


PLOS ONE | 2011

Reversal of Fragile X Phenotypes by Manipulation of AβPP/Aβ Levels in Fmr1KO Mice

Cara J. Westmark; Pamela R. Westmark; Kenneth J. O'Riordan; Brian C. Ray; Crystal Hervey; M. Shahriar Salamat; Sara Abozeid; Kelsey M. Stein; Levi Stodola; Michael Tranfaglia; Corinna Burger; Elizabeth Berry-Kravis; James S. Malter

Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading known genetic cause of autism. Fragile X mental retardation protein (FMRP), which is absent or expressed at substantially reduced levels in FXS, binds to and controls the postsynaptic translation of amyloid β-protein precursor (AβPP) mRNA. Cleavage of AβPP can produce β-amyloid (Aβ), a 39–43 amino acid peptide mis-expressed in Alzheimers disease (AD) and Down syndrome (DS). Aβ is over-expressed in the brain of Fmr1KO mice, suggesting a pathogenic role in FXS. To determine if genetic reduction of AβPP/Aβ rescues characteristic FXS phenotypes, we assessed audiogenic seizures (AGS), anxiety, the ratio of mature versus immature dendritic spines and metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD) in Fmr1KO mice after removal of one App allele. All of these phenotypes were partially or completely reverted to normal. Plasma Aβ1–42 was significantly reduced in full-mutation FXS males compared to age-matched controls while cortical and hippocampal levels were somewhat increased, suggesting that Aβ is sequestered in the brain. Evolving therapies directed at reducing Aβ in AD may be applicable to FXS and Aβ may serve as a plasma-based biomarker to facilitate disease diagnosis or assess therapeutic efficacy.


Science Signaling | 2010

Pin1 and PKMζ Sequentially Control Dendritic Protein Synthesis

Pamela R. Westmark; Cara J. Westmark; Suqing Wang; Jonathan M. Levenson; Kenneth J. O'Riordan; Corinna Burger; James S. Malter

A feedback loop involving Pin1, protein synthesis, and protein kinase M ζ regulates a persistent form of synaptic plasticity. Pinning Down LTP The late phase of long-term potentiation (L-LTP), a persistent use-dependent increase in the efficacy of glutamatergic synapses believed to underlie some forms of memory, depends on new protein synthesis in dendrites. Noting that peptidyl-prolyl isomerases (PPIases) have been implicated in L-LTP, Westmark et al. investigated the role of the PPIase Pin1 in dendritic protein synthesis and LTP. They found that catalytically active Pin1 was present in dendrites, where it associated with eukaryotic translation initiation factor 4E (eIF4E) and the eIF4E-binding proteins 4E-BP1 and 2 and inhibited translation. Glutamate inhibited Pin1 activity and relieved its suppression of translation. Maintenance of L-LTP depends on the activity of protein kinase M ζ (PKMζ, a constitutively active isoform of PKC), and mice lacking Pin1 showed both increased PKMζ abundance and enhanced L-LTP. PKMζ inhibited Pin1 activity and promoted translation. The authors thus propose that LTP depends on interactions among Pin1, PKMζ, and translation: Pin1-dependent inhibition of PKMζ translation is relieved by glutamatergic signaling, allowing PKMζ, in turn, to inhibit Pin1, thereby maintaining dendritic translation and L-LTP. Some forms of learning and memory and their electrophysiologic correlate, long-term potentiation (LTP), require dendritic translation. We demonstrate that Pin1 (protein interacting with NIMA 1), a peptidyl-prolyl isomerase, is present in dendritic spines and shafts and inhibits protein synthesis induced by glutamatergic signaling. Pin1 suppression increased dendritic translation, possibly through eukaryotic translation initiation factor 4E (eIF4E) and eIF4E binding proteins 1 and 2 (4E-BP1/2). Consistent with increased protein synthesis, hippocampal slices from Pin−/− mice had normal early LTP (E-LTP) but significantly enhanced late LTP (L-LTP) compared to wild-type controls. Protein kinase C ζ (PKCζ) and protein kinase M ζ (PKMζ) were increased in Pin1−/− mouse brain, and their activity was required to maintain dendritic translation. PKMζ interacted with and inhibited Pin1 by phosphorylating serine 16. Therefore, glutamate-induced, dendritic protein synthesis is sequentially regulated by Pin1 and PKMζ signaling.


Oncogene | 2005

RhoB mRNA is stabilized by HuR after UV light

Cara J. Westmark; Virginia B. Bartleson; James S. Malter

RhoB is a small GTP-binding protein that is involved in apoptotic signal transduction. We have cloned the mouse RhoB mRNA including a 1377 nucleotide 3′-untranslated region (UTR) that contains six AU-rich elements (AREs) as well as several uridine-rich stretches. There is 94% homology overall between the mouse and rat RhoB genes and 92% homology between the mouse and a putative human clone. Ultraviolet light (UVL) induces RhoB production through regulated changes in gene transcription and mRNA stabilization although the latter mechanism is unknown. We observed that UVL increased the half-life of RhoB mRNA from 63 min to 3.3 h in NIH/3T3 cells and from 87 min to 2.7 h in normal human keratinocyte cells. In vitro mobility shift assays demonstrated that HuR bound the 3′-UTR of RhoB at three distinct locations (nucleotides 1342–1696, 1765–1920 and 1897–1977) suggesting a regulatory role for this RNA-binding protein. HuR immunoprecipitations were positive for RhoB mRNA indicating an in vivo association, and Western blot analysis and immunofluorescence demonstrated that HuR rapidly partitions from the nucleus to the cytoplasm after UVL. Therefore, we propose a model in which UVL induces stress-activated signal transduction leading to nuclear/cytoplasmic shuttling of HuR and subsequent stabilization of RhoB mRNA.


Journal of Alzheimer's Disease | 2010

Alzheimer's Disease and Down Syndrome Rodent Models Exhibit Audiogenic Seizures

Cara J. Westmark; Pamela R. Westmark; James S. Malter

Amyloid-beta protein precursor (AbetaPP) is overexpressed in Alzheimers disease (AD), Down syndrome (DS), autism, and fragile X syndrome. Seizures are a common phenotype in all of these neurological disorders, yet the underlying molecular mechanism(s) of seizure induction and propagation remain largely unknown. We demonstrate that AD (Tg2576) and DS (Ts65Dn) mice exhibit audiogenic seizures, which can be attenuated with antagonists to metabotropic glutamate receptor 5 (mGluR5) or by passive immunization with anti-amyloid-beta antibody. Our data strongly implicates AbetaPP or a catabolite in seizure susceptibility and suggests that mGluR5 mediates this response.


Current Alzheimer Research | 2010

Fragile X Syndrome and Alzheimers Disease: Another Story About APP and β -Amyloid

James S. Malter; Brian C. Ray; Pamela R. Westmark; Cara J. Westmark

As the mechanisms underlying neuronal development and degeneration become clarified, a number of common effectors and signaling pathways are becoming apparent. Here we describe the identification of Abeta, long considered a pathologic mediator of Alzheimers Disease and Down Syndrome, as similarly over-expressed in the neurodevelopmental disease, Fragile X Syndrome. We also show that mGluR5 inhibitors, currently employed for the treatment of Fragile X, reduce Abeta production in rodent models of Fragile X and AD as well as reduce disease phenotypes including seizures. Thus seemingly disparate neurologic diseases may share a common pathologic instigator and be treatable with a common, currently available class of therapeutics.


Journal of Alzheimer's Disease | 2013

Soy-Based Diet Exacerbates Seizures in Mouse Models of Neurological Disease

Cara J. Westmark; Pamela R. Westmark; James S. Malter

Seizures are a common phenotype in many neurological disorders including Alzheimers disease, Down syndrome, and fragile X syndrome. Mouse models of these disorders overexpress amyloid-β protein precursor (AβPP) and amyloid-β (Aβ) and are highly susceptible to audiogenic-induced seizures (AGS). We observed decreased AGS in these mice fed a casein-based, purified diet (D07030301) as opposed to a standard soy protein-containing, non-purified diet (Purina 5015). Our objective in this manuscript was to determine if soy protein, and in particular soy isoflavones, in the Purina 5015 were contributing to the seizure phenotype. Wild running, AGS, and death rates were assessed in juvenile mice fed Purina 5015, D07030301, D07030301 containing soy protein, or D07030301 supplemented with individual isoflavones (750 mg/kg daidzein or genistein). A short treatment (3 days) with Purina 5015 induced wild running and AGS in Alzheimers disease mice. A 3-day treatment with daidzein-supplemented diet, but not genistein, induced wild running in wild type mice. To understand the mechanism underlying daidzein activity, we assessed dendritic AβPP expression in primary, cultured, wild type neurons treated with daidzein or genistein. In vitro, daidzein significantly increased dendritic AβPP. Thus, the soy isoflavone daidzein recapitulated seizure induction in vivo and altered AβPP expression in vitro. These results have important implications for individuals on soy-based diets as well as for rodent model research.


Ageing Research Reviews | 2012

The Regulation of AβPP Expression by RNA-Binding Proteins

Cara J. Westmark; James S. Malter

Amyloid β-protein precursor (AβPP) is cleaved by β- and γ-secretases to liberate amyloid beta (Aβ), the predominant protein found in the senile plaques associated with Alzheimers disease (AD) and Down syndrome (Masters et al., 1985). Intense investigation by the scientific community has centered on understanding the molecular pathways that underlie the production and accumulation of Aβ Therapeutics that reduce the levels of this tenacious, plaque-promoting peptide may reduce the ongoing neural dysfunction and neuronal degeneration that occurs so profoundly in AD. AβPP and Aβ production are highly complex and involve still to be elucidated combinations of transcriptional, post-transcriptional, translational and post-translational events that mediate the production, processing and clearance of these proteins. Research in our laboratory for the past two decades has focused on the role of RNA binding proteins (RBPs) in mediating the post-transcriptional as well as translational regulation of APP messenger RNA (mRNA). This review article summarizes our findings, as well as those from other laboratories, describing the identification of regulatory RBPs, where and under what conditions they interact with APP mRNA and how those interactions control AβPP and Aβ synthesis.


PLOS ONE | 2014

Soy Infant Formula and Seizures in Children with Autism: A Retrospective Study

Cara J. Westmark

Seizures are a common phenotype in many neurodevelopmental disorders including fragile X syndrome, Down syndrome and autism. We hypothesized that phytoestrogens in soy-based infant formula were contributing to lower seizure threshold in these disorders. Herein, we evaluated the dependence of seizure incidence on infant formula in a population of autistic children. Medical record data were obtained on 1,949 autistic children from the SFARI Simplex Collection. An autism diagnosis was determined by scores on the ADI-R and ADOS exams. The database included data on infant formula use, seizure incidence, the specific type of seizure exhibited and IQ. Soy-based formula was utilized in 17.5% of the study population. Females comprised 13.4% of the subjects. There was a 2.6-fold higher rate of febrile seizures [4.2% versus 1.6%, OR = 2.6, 95% CI = 1.3–5.3], a 2.1-fold higher rate of epilepsy comorbidity [3.6% versus 1.7%, OR = 2.2, 95% CI = 1.1–4.7] and a 4-fold higher rate of simple partial seizures [1.2% versus 0.3%, OR = 4.8, 95% CI = 1.0–23] in the autistic children fed soy-based formula. No statistically significant associations were found with other outcomes including: IQ, age of seizure onset, infantile spasms and atonic, generalized tonic clonic, absence and complex partial seizures. Limitations of the study included: infant formula and seizure data were based on parental recall, there were significantly less female subjects, and there was lack of data regarding critical confounders such as the reasons the subjects used soy formula, age at which soy formula was initiated and the length of time on soy formula. Despite these limitations, our results suggest that the use of soy-based infant formula may be associated with febrile seizures in both genders and with a diagnosis of epilepsy in males in autistic children. Given the lack of data on critical confounders and the retrospective nature of the study, a prospective study is required to confirm the association.


Journal of Visualized Experiments | 2011

Preparation of Synaptoneurosomes from Mouse Cortex using a Discontinuous Percoll-Sucrose Density Gradient

Pamela R. Westmark; Cara J. Westmark; Athavi Jeevananthan; James S. Malter

Synaptoneurosomes (SNs) are obtained after homogenization and fractionation of mouse brain cortex. They are resealed vesicles or isolated terminals that break away from axon terminals when the cortical tissue is homogenized. The SNs retain pre- and postsynaptic characteristics, which makes them useful in the study of synaptic transmission. They retain the molecular machinery used in neuronal signaling and are capable of uptake, storage, and release of neurotransmitters. The production and isolation of active SNs can be problematic using medias like Ficoll, which can be cytotoxic and require extended centrifugation due to high density, and filtration and centrifugation methods, which can result in low activity due to mechanical damage of the SNs. However, the use of discontinuous Percoll-sucrose density gradients to isolate SNs provides a rapid method to produce good yields of translationally active SNs. The Percoll-sucrose gradient method is quick and gentle as it employs isotonic conditions, has fewer and shorter centrifugation spins and avoids centrifugation steps that pellet SNs and cause mechanical damage.

Collaboration


Dive into the Cara J. Westmark's collaboration.

Top Co-Authors

Avatar

James S. Malter

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pamela R. Westmark

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Brian C. Ray

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Chrysanthy Ikonomidou

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Corinna Burger

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Berry-Kravis

Rush University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kenneth J. O'Riordan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Athavi Jeevananthan

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Bingming Chen

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge