Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cara K. Fraser is active.

Publication


Featured researches published by Cara K. Fraser.


Blood | 2008

Dasatinib suppresses in vitro natural killer cell cytotoxicity

Stephen J. Blake; A. Bruce Lyons; Cara K. Fraser; John D. Hayball; Timothy P. Hughes

To the editor: The recent publication by Schade et al[1][1] demonstrated that the Src/Abl kinase inhibitor dasatinib (Sprycel), used for the treatment of chronic myeloid leukemia,[2][2] inhibits the function of T cells in vitro and in vivo. Dasatinib inhibition of the Src-family kinase LCK, which


Expert Review of Vaccines | 2007

Improving vaccines by incorporating immunological coadjuvants

Cara K. Fraser; Kerrilyn R. Diener; Michael P. Brown; John D. Hayball

While vaccination continues to be the most successful interventionist health policy to date, infectious disease remains a significant cause of death worldwide. A primary reason that vaccination is not able to generate effective immunity is a lack of appropriate adjuvants capable of initiating the desired immune response. Adjuvant combinations can potentially overcome this problem; however, the possible permutations to consider, which include the route and kinetics of vaccination, as well as combinations of adjuvants, are practically limitless. This review aims to summarize the current understanding of adjuvants and related immunological processes and how this knowledge can and has been applied to the strategic selection of adjuvant combinations as components of vaccines against human infectious disease.


Experimental Hematology | 2009

Dasatinib inhibits recombinant viral antigen-specific murine CD4+ and CD8+ T-cell responses and NK-cell cytolytic activity in vitro and in vivo

Cara K. Fraser; Stephen J. Blake; Kerrilyn R. Diener; A. Bruce Lyons; Michael P. Brown; Timothy P. Hughes; John D. Hayball

OBJECTIVE Dasatinib (BMS-354825) is a small molecule Src/Abl tyrosine kinase inhibitor approved for the treatment of chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. Members of the Src family of kinases are involved in the induction of innate and adaptive immunity. The purpose of this study was to evaluate the inhibitory action of dasatinib on antigen-specific CD8(+) and CD4(+) T-cell function, as well as natural killer (NK) cell cytotoxicity. MATERIALS AND METHODS To assess dasatinib-mediated inhibition of antigen-specific T-cell proliferation, transgenic CD4(+) and CD8(+) T cells specific for ovalbumin were utilized. Endogenous CD4(+) and CD8(+) T-cell responses were determined following immunization of dasatinib-treated or control mice with a nonreplicating recombinant virus. Clearance of the RMA-S cells, a major histocompatibility complex (MHC) class I-deficient thymoma sensitive to NK-cell lysis, was analyzed in mice undergoing dasatinib treatment. RESULTS Dasatinib inhibited antigen-specific proliferation of murine CD4(+) and CD8(+) transgenic T cells in vitro and in vivo. Endogenous antigen-specific helper T-cell recall responses and induction of T-cell-mediated cytotoxicity following immunization with a nonreplicating recombinant virus were also inhibited. So to was the ability of NK cells to eliminate MHC class I-deficient cells in vivo. CONCLUSIONS These findings suggest that dasatinib has the potential to modulate the host immune response at clinical doses and highlights scope for off target applications, e.g., therapeutic immunosuppression in the context of autoimmune pathogenesis and allogeneic tissue transplantation.


Experimental Hematology | 2009

Dasatinib inhibits the secretion of TNF-α following TLR stimulation in vitro and in vivo

Cara K. Fraser; Erin L. Lousberg; Raman Kumar; Timothy P. Hughes; Kerrilyn R. Diener; John D. Hayball

OBJECTIVE Dasatinib (SPRYCEL, BMS-354825) is a small molecule Src/Abl tyrosine kinase inhibitor approved for the treatment of chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. However, kinases inhibited by dasatinib are also involved in the induction and regulation of innate immunity. The purpose of this study was to evaluate the effect of dasatinib on cytokine secretion in response to toll-like receptor (TLR) stimulation. MATERIALS AND METHODS Dasatinib-treated mice were administered intraperitoneally with lipopolysaccharide (LPS) and serum cytokine (tumor necrosis factor-alpha [TNF-alpha], interleukin [IL]-10, and IL-6) levels and neutrophil accumulation in the lungs were analyzed. Cytokine secretions (TNF-alpha and IL-6) from TLR3-, TLR4-, and TLR9-stimulated RAW264.7, as well as TLR4- and TLR9-stimulated bone marrow-derived macrophages (BMDM) were also evaluated. RESULTS Dasatinib-treated mice had reduced serum levels of TNF-alpha in response to LPS administration; however, other inflammatory hallmarks of systemic LPS administration, such as secretion of IL-6 and accumulation of neutrophils in the lung, were unaffected. In contrast to the reduced TNF-alpha levels, dasatinib treatment increased serum levels of IL-10 following LPS administration. The production of TNF-alpha was also impaired in vitro in response to TLR3, TLR4, and TLR9 stimulation of the mouse macrophage cell line RAW264.7, as well as TLR4 and TLR9 stimulation of BMDM; IL-6 production was also impaired in dasatinib-treated BMDM. CONCLUSIONS These findings further support the ability of dasatinib to modulate the host immune response and highlights scope for off-target applications of dasatinib for the control of TNF-alpha-mediated inflammatory disorders.


Journal of Immunotherapy | 2015

BRAF and MEK inhibition variably affect GD2-specific chimeric antigen receptor (CAR) T-cell function in vitro

Tessa Gargett; Cara K. Fraser; Gianpietro Dotti; Eric Yvon; Michael P. Brown

Cancer immunotherapy has long been used in the treatment of metastatic melanoma, and an anti-CTLA-4 monoclonal antibody treatment has recently been approved by the US Food and Drug Administration. Targeted therapies such as small molecule kinase inhibitors targeting deregulated mitogen-activated protein kinase (MAPK) signaling have markedly improved melanoma control in up to 50% of metastatic disease patients and have likewise been recently approved. Combination therapies for melanoma have been proposed as a way to exploit the high-level but short-term responses associated with kinase inhibitor therapies and the low-level but longer-term responses associated with immunotherapy. Cancer immunotherapy now includes adoptive transfer of autologous tumor-specific chimeric antigen receptor (CAR) T cells and this mode of therapy is a candidate for combination with small molecule drugs. This paper describes CART cells that target GD2-expressing melanoma cells and investigates the effects of approved MAPK pathway-targeted therapies for melanoma [vemurafenib (Vem), dabrafenib (Dab), and trametinib (Tram)] on the viability, activation, proliferation, and cytotoxic T lymphocyte activity of these CAR T cells, as well as on normal peripheral blood mononuclear cells. We report that, although all these drugs lead to inhibition of stimulated T cells at high concentrations in vitro, only Vem inhibited T cells at concentrations equivalent to reported plasma concentrations in treated patients. Although the combination of Dab and Tram also resulted in inhibition of T-cell effector functions at some therapeutic concentrations, Dab itself had little adverse effect on CAR T-cell function. These findings may have implications for novel therapeutic combinations of adoptive CAR T-cell immunotherapy and MAPK pathway inhibitors.


Scientific Reports | 2017

Metabolic profiling of presymptomatic Huntington’s disease sheep reveals novel biomarkers

Debra J. Skene; Benita Middleton; Cara K. Fraser; Jla Pennings; Timothy R. Kuchel; Rudiger; Cs Bawden; Anne Jennifer Morton

The pronounced cachexia (unexplained wasting) seen in Huntington’s disease (HD) patients suggests that metabolic dysregulation plays a role in HD pathogenesis, although evidence of metabolic abnormalities in HD patients is inconsistent. We performed metabolic profiling of plasma from presymptomatic HD transgenic and control sheep. Metabolites were quantified in sequential plasma samples taken over a 25 h period using a targeted LC/MS metabolomics approach. Significant changes with respect to genotype were observed in 89/130 identified metabolites, including sphingolipids, biogenic amines, amino acids and urea. Citrulline and arginine increased significantly in HD compared to control sheep. Ten other amino acids decreased in presymptomatic HD sheep, including branched chain amino acids (isoleucine, leucine and valine) that have been identified previously as potential biomarkers of HD. Significant increases in urea, arginine, citrulline, asymmetric and symmetric dimethylarginine, alongside decreases in sphingolipids, indicate that both the urea cycle and nitric oxide pathways are dysregulated at early stages in HD. Logistic prediction modelling identified a set of 8 biomarkers that can identify 80% of the presymptomatic HD sheep as transgenic, with 90% confidence. This level of sensitivity, using minimally invasive methods, offers novel opportunities for monitoring disease progression in HD patients.


Cancer Biology & Therapy | 2010

Dasatinib alters the metastatic phenotype of B16-OVA melanoma in vivo

Cara K. Fraser; Erin L. Lousberg; Leigh R. Guerin; Timothy P. Hughes; Michael P. Brown; Kerrilyn R. Diener; John D. Hayball

The Src/Abl tyrosine kinase inhibitor dasatinib is an approved chronic myeloid leukemia treatment and is under investigation for solid tumor therapy. Members of the Src family of kinases (SFKs) are involved in the process of metastasis and dasatinib inhibits the migration and invasiveness of human melanoma cell lines in vitro. SFKs are also involved in immune function and angiogenesis, which both contribute to As active and passive immunotherapies continue to be investigated in metastatic melanoma, we investigated possible interactions between kinase inhibitors and immunotherapies. A murine syngenic model of metastatic melanoma in which B16F10 cells expressed ovalbumin (B16-OVA) was employed and the active immunotherapy comprised immunization with an OVA-expressing recombinant fowlpox virus (FPVOVA).Dasatinib did not affect B16-OVA viability, proliferation, migration or soft agar colony formation. However, depending on drug dose and schedule, differences in the metastatic behavior of B16-OVA were observed in vivo after dasatinib therapy. At a dose of 5 mg/kg/day given before tumor challenge, dasatinib therapy reduced the number of pulmonary metastases. Conversely, a higher dose (25 mg/kg/day), did not affect the number of pulmonary metastases and increased the number of extra-pulmonary metastases. Finally, immunization of B16-OVA-bearing mice with FPVOVA reduced the number of lung metastases. Prior treatment of these mice with dasatinib 5 mg/kg/day did not affect the incidence of lung metastases. Although the mechanisms by which dasatinib alters the metastatic behavior of B16-OVA cells in vivo remain to be determined, we hypothesize that dasatinib acts via multiple tumor-extrinsic processes that include immune function and neoangiogenesis.


EJNMMI research | 2014

The La antigen is over-expressed in lung cancer and is a selective dead cancer cell target for radioimmunotherapy using the La-specific antibody APOMAB®

Alexander H. Staudacher; Fares Al-Ejeh; Cara K. Fraser; Jocelyn Margaret Darby; David Roder; Andrew Ruszkiewicz; Jim Manavis; Michael P. Brown

BackgroundThe lupus-associated (La)-specific murine monoclonal antibody DAB4 (APOMAB®) specifically binds dead cancer cells. Using DAB4, we examined La expression in human lung cancer samples to assess its suitability as a cancer-selective therapeutic target. We evaluated the safety and effectiveness of radioimmunotherapy (RIT) using DAB4 radiolabeled with Lutetium-177 (177Lu) in the murine Lewis Lung (LL2) carcinoma model, and determined whether combining RIT with DNA-damaging cisplatin-based chemotherapy, a PARP inhibitor (PARPi), or both alters treatment responses.MethodsThe expression of La mRNA in human lung cancer samples was analysed using the online database Oncomine, and the protein expression of La was examined using a TissueFocus Cancer Survey Tissue Microarray. The binding of DAB4 to cisplatin-treated LL2 cells was assessed in vitro. LL2 tumour-bearing mice were administered escalating doses of 177Lu-DAB4 alone or in combination with chemotherapy, and tumour growth and survival measured. Biodistribution analysis was used to determine tissue uptake of 177Lu-DAB4 or its isotype control (177Lu-Sal5), when delivered alone or after chemotherapy. PARPi (rucaparib; AG-014699) was combined with chemotherapy and the effects of combined treatment on tumour growth, tumour cell DNA damage and death, and intratumoural DAB4 binding were also analysed. The effect of the triple combination of PARPi, chemotherapy and 177Lu-DAB4 on tumour growth and survival of LL2 tumour-bearing mice was tested.ResultsLa was over-expressed at both mRNA and protein levels in surgical specimens of human lung cancer and the over-expression of La mRNA conferred a poorer prognosis. DAB4 bound specifically to cisplatin-induced dead LL2 cells in vitro. An anti-tumour dose response was observed when escalating doses of 177Lu-DAB4 were delivered in vivo, with supra-additive responses observed when chemotherapy was combined with 177Lu-DAB4. Combining PARPi with chemotherapy was more effective than chemotherapy alone with increased tumour cell DNA damage and death, and intratumoural DAB4 binding. The combination of PARPi, chemotherapy and 177Lu-DAB4 was well-tolerated and maximised tumour growth delay.ConclusionsThe La antigen represents a dead cancer cell-specific target in lung cancer, and DAB4 specifically targeted tumour tissue in vivo, particularly after chemotherapy. Tumour uptake of DAB4 increased further after the combination of PARPi and chemotherapy, which generated new dead tumour cell-binding targets. Consequently, combining 177Lu-DAB4 with PARPi and chemotherapy produced the greatest anti-tumour response. Therefore, the triple combination of PARPi, chemotherapy and RIT may have broad clinical utility.


Scientific Reports | 2017

Therapeutic targeting of HMGB1 during experimental sepsis modulates the inflammatory cytokine profile to one associated with improved clinical outcomes

Natalie E. Stevens; Marianne J. Chapman; Cara K. Fraser; Tim Kuchel; John D. Hayball; Kerrilyn R. Diener

Sepsis remains a significant health burden and a major clinical need exists for therapeutics to dampen the excessive and uncontrolled immune activation. Nuclear protein high mobility group box protein 1 (HMGB1) is released following cell death and is a late mediator in sepsis pathogenesis. While approaches targeting HMGB1 have demonstrated reduced mortality in pre-clinical models of sepsis, the impact of HMGB1 blockade on the complex septic inflammatory milieu and the development of subsequent immunosuppression remain enigmatic. Analysis of plasma samples obtained from septic shock patients established an association between increased HMGB1 and non-survival, higher APACHE II scores, and increased pro-inflammatory cytokine responses. Pre-clinically, administration of neutralising ovine anti-HMGB1 polyclonal antibodies improved survival in murine endotoxaemia and caecal ligation and puncture-induced sepsis models, and altered early cytokine profiles to one which corresponded to patterns observed in the surviving patient cohort. Additionally, anti-HMGB1 treated murine sepsis survivors were significantly more resistant to secondary bacterial infection and exhibited altered innate immune cell phenotypes and cytokine responses. These findings demonstrate that anti-HMGB1 antibodies alter inflammation in murine sepsis models and reduce sepsis mortality without potentiating immunosuppression.


Journal of Virology | 2011

Antigen-Specific T-Cell Responses to a Recombinant Fowlpox Virus Are Dependent on MyD88 and Interleukin-18 and Independent of Toll-Like Receptor 7 (TLR7)- and TLR9-Mediated Innate Immune Recognition

Erin L. Lousberg; Kerrilyn R. Diener; Cara K. Fraser; Simon Phipps; Paul S. Foster; Weisan Chen; Satoshi Uematsu; Shizuo Akira; Sarah A. Robertson; Michael P. Brown; John D. Hayball

ABSTRACT Fowlpox virus (FWPV) is a double-stranded DNA virus long used as a live-attenuated vaccine against poultry diseases, but more recent interest has focused on its use as a mammalian vaccine vector. Here, in a mouse model system using FWPV encoding the nominal target antigen chicken ovalbumin (OVA) (FWPVOVA), we describe for the first time some of the fundamental processes by which FWPV engages both the innate and adaptive immune systems. We show that Toll-like receptor 7 (TLR7) and TLR9 are important for type I interferon secretion by dendritic cells, while TLR9 is solely required for proinflammatory cytokine secretion. Despite this functional role for TLR7 and TLR9 in vitro, only the adapter protein myeloid differentiation primary response gene 88 (MyD88) was shown to be essential for the formation of adaptive immunity to FWPVOVA in vivo. The dependence on MyD88 was confined only to the T-cell compartment and was not related to its contribution to TLR signaling, dendritic cell maturation, or the capture and presentation of FWPV-derived OVA antigen. We demonstrate that this is not by means of mediating T-cell-dependent interleukin-1 (IL-1) signaling, but rather, we suggest that MyD88 functions to support T-cell-specific IL-18 receptor signaling, which in turn is essential for the formation of adaptive immunity to FWPV-encoded OVA.

Collaboration


Dive into the Cara K. Fraser's collaboration.

Top Co-Authors

Avatar

John D. Hayball

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin L. Lousberg

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalie E. Stevens

University of South Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohammed Alsharifi

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wing Yin Tong

University of South Australia

View shared research outputs
Researchain Logo
Decentralizing Knowledge