Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Caren Nádia Soares de Sousa is active.

Publication


Featured researches published by Caren Nádia Soares de Sousa.


Journal of Affective Disorders | 2017

Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness

Danielle Silveira Macêdo; Adriano José Maia Chaves Filho; Caren Nádia Soares de Sousa; João Quevedo; Tatiana Barichello; Hélio Vitoriano Nobre Júnior

OBJECTIVES The first drug repurposed for the treatment of depression was the tuberculostatic iproniazid. At present, drugs belonging to new classes of antidepressants still have antimicrobial effects. Dysbiosis of gut microbiota was implicated in the development or exacerbation of mental disorders, such as major depressive disorder (MDD). Based on the current interest in the gut-brain axis, the focus of this narrative review is to compile the available studies regarding the influences of gut microbiota in behavior and depression and to show the antimicrobial effect of antidepressant drugs. A discussion regarding the possible contribution of the antimicrobial effect of antidepressant drugs to its effectiveness/resistance is included. METHODS The search included relevant articles from PubMed, SciELO, LILACS, PsycINFO, and ISI Web of Knowledge. RESULTS MDD is associated with changes in gut permeability and microbiota composition. In this respect, antidepressant drugs present antimicrobial effects that could also be related to the effectiveness of these drugs for MDD treatment. Conversely, some antimicrobials present antidepressant effects. CONCLUSION Both antidepressants and antimicrobials present neuroprotective/antidepressant and antimicrobial effects. Further studies are needed to evaluate the participation of antimicrobial mechanisms of antidepressants in MDD treatment as well as to determine the contribution of this effect to antidepressant resistance.


Schizophrenia Research | 2015

Alpha-lipoic acid alone and combined with clozapine reverses schizophrenia-like symptoms induced by ketamine in mice: Participation of antioxidant, nitrergic and neurotrophic mechanisms

Germana Silva Vasconcelos; Naiara Coelho Ximenes; Caren Nádia Soares de Sousa; Tatiana de Queiroz Oliveira; Laio Ladislau Lopes Lima; Clarissa Severino Gama; Danielle Silveira Macêdo; Silvânia Maria Mendes Vasconcelos

Oxidative stress has important implications in schizophrenia. Alpha-lipoic acid (ALA) is a natural antioxidant synthesized in human tissues with clinical uses. We studied the effect of ALA or clozapine (CLZ) alone or in combination in the reversal of schizophrenia-like alterations induced by ketamine (KET). Adult male mice received saline or KET for 14 days. From 8th to 14th days mice were additionally administered saline, ALA (100 mg/kg), CLZ 2.5 or 5 mg/kg or the combinations ALA+CLZ2.5 or ALA+CLZ5. Schizophrenia-like symptoms were evaluated by prepulse inhibition of the startle (PPI) and locomotor activity (positive-like), social preference (negative-like) and Y maze (cognitive-like). Oxidative alterations (reduced glutathione - GSH and lipid peroxidation - LP) and nitrite in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) and BDNF in the PFC were also determined. KET caused deficits in PPI, working memory, social interaction and hyperlocomotion. Decreased levels of GSH, nitrite (HC) and BDNF and increased LP were also observed in KET-treated mice. ALA and CLZ alone reversed KET-induced behavioral alterations. These drugs also reversed the decreases in GSH (HC) and BDNF and increase in LP (PFC, HC and ST). The combination ALA+CLZ2.5 reversed behavioral and some neurochemical parameters. However, ALA+CLZ5 caused motor impairment. Therefore, ALA presented an antipsychotic-like profile reversing KET-induced positive- and negative-like symptoms. The mechanism partially involves antioxidant, neurotrophic and nitrergic pathways. The combination of ALA+CLZ2.5 improved most of the parameters evaluated in this study without causing motor impairment demonstrating, thus, that possibly when combined with ALA a lower dose of CLZ is required.


Brazilian Journal of Medical and Biological Research | 2015

Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review

E.B.C. Lima; Caren Nádia Soares de Sousa; L.N. Meneses; Naiara Coelho Ximenes; M.A. Santos Júnior; Germana Silva Vasconcelos; N.B.C. Lima; Manoel Cláudio Azevedo Patrocínio; Danielle Silveira Macêdo; Silvânia Maria Mendes Vasconcelos

Cocos nucifera (L.) (Arecaceae) is commonly called the “coconut tree” and is the most naturally widespread fruit plant on Earth. Throughout history, humans have used medicinal plants therapeutically, and minerals, plants, and animals have traditionally been the main sources of drugs. The constituents of C. nucifera have some biological effects, such as antihelminthic, anti-inflammatory, antinociceptive, antioxidant, antifungal, antimicrobial, and antitumor activities. Our objective in the present study was to review the phytochemical profile, pharmacological activities, and toxicology of C. nucifera to guide future preclinical and clinical studies using this plant. This systematic review consisted of searches performed using scientific databases such as Scopus, Science Direct, PubMed, SciVerse, and Scientific Electronic Library Online. Some uses of the plant were partially confirmed by previous studies demonstrating analgesic, antiarthritic, antibacterial, antipyretic, antihelminthic, antidiarrheal, and hypoglycemic activities. In addition, other properties such as antihypertensive, anti-inflammatory, antimicrobial, antioxidant, cardioprotective, antiseizure, cytotoxicity, hepatoprotective, vasodilation, nephroprotective, and anti-osteoporosis effects were also reported. Because each part of C. nucifera has different constituents, the pharmacological effects of the plant vary according to the part of the plant evaluated.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2016

Evidence for protective effect of lipoic acid and desvenlafaxine on oxidative stress in a model depression in mice.

Márcia Calheiros Chaves Silva; Caren Nádia Soares de Sousa; Patrícia Xavier Lima Gomes; Gersilene Valente de Oliveira; Fernanda Yvelize Ramos de Araújo; Naiara Coelho Ximenes; Jéssica Calheiros da Silva; Germana Silva Vasconcelos; Luzia Kalyne Almeida Moreira Leal; Danielle Silveira Macêdo; Silvânia Maria Mendes Vasconcelos

Oxidative stress is implicated in the neurobiology of depression. Here we investigated oxidative alterations in brain areas of animals submitted to the model of depression induced by corticosterone (CORT) and the effects of the antioxidant compound alpha-lipoic acid (ALA) alone or associated with the antidepressant desvenlafaxine (DVS) in these alterations. Female mice received vehicle or CORT (20 mg/kg) during 14 days. From the 15th to 21st days different animals received further administrations of: vehicle, DVS (10 or 20 mg/kg), ALA (100 or 200 mg/kg), or the combinations of DVS10+ALA100, DVS20+ALA100, DVS10+ALA200, or DVS20+ALA200. Twenty-four hours after the last drug administration prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) were dissected for the determination of the activity of superoxide dismutase (SOD), reduced glutathione (GSH) and lipid peroxidation (LP) levels. CORT significantly increased SOD activity in the PFC and HC, decreased GSH levels in the HC and increased LP in all brain areas studied when compared to saline-treated animals. Decrements of SOD activity were observed in all groups and brain areas studied when compared to controls and CORT. The hippocampal decrease in GSH was reversed by ALA100, DVS10+ALA100, DVS20+ALA100 and DVS20+ALA200. The same DVS+ALA combination groups presented increased levels of GSH in the PFC and ST. The greater GSH levels were observed in the PFC, HC and ST of DVS20+ALA200 mice. LP was reversed in the groups ALA200 (PFC), DVS10+ALA100, DVS20+ALA100 (PFC, HC and ST), and DVS20+ALA200 (PFC, HC). Our findings contribute to the previous preclinical evidences implicating ALA as a promising agent for augmentation therapy in depression.


Psychiatry Research-neuroimaging | 2015

Reversal of corticosterone-induced BDNF alterations by the natural antioxidant alpha-lipoic acid alone and combined with desvenlafaxine: Emphasis on the neurotrophic hypothesis of depression

Caren Nádia Soares de Sousa; L.N. Meneses; Germana Silva Vasconcelos; Márcia Calheiros Chaves Silva; Jéssica Calheiros da Silva; Danielle Silveira Macêdo; Silvânia Maria Mendes Vasconcelos

Brain derived neurotrophic factor (BDNF) is linked to the pathophysiology of depression. We hypothesized that BDNF is one of the neurobiological pathways related to the augmentation effect of alpha-lipoic acid (ALA) when associated with antidepressants. Female mice were administered vehicle or CORT 20mg/kg during 14 days. From the 15th to 21st days the animals were divided in groups that were further administered: vehicle, desvenlafaxine (DVS) 10 or 20mg/kg, ALA 100 or 200mg/kg or the combinations of DVS10+ALA100, DVS20+ALA100, DVS10+ALA200 or DVS20+ALA200. ALA or DVS alone or in combination reversed CORT-induced increase in immobility time in the forced swimming test and decrease in sucrose preference, presenting, thus, an antidepressant-like effect. DVS10 alone reversed CORT-induced decrease in BDNF in the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST). The same was observed in the HC and ST of ALA200 treated animals. The combination of DVS and ALA200 reversed CORT-induced alterations in BDNF and even, in some cases, increased the levels of this neurotrophin when compared to vehicle-treated animals in HC and ST. Taken together, these results suggest that the combination of the DVS+ALA may be valuable for treating conditions in which BDNF levels are decreased, such as depression.


Evidence-based Complementary and Alternative Medicine | 2013

Behavioral and Neurochemical Effects of Alpha-Lipoic Acid in the Model of Parkinson’s Disease Induced by Unilateral Stereotaxic Injection of 6-Ohda in Rat

Dayane Pessoa de Araújo; Caren Nádia Soares de Sousa; Paulo Victor Pontes Araújo; Carlos Eduardo de Souza Menezes; Francisca Taciana Sousa Rodrigues; Sarah de Souza Escudeiro; Nicole Brito Cortez Lima; Manoel Cláudio Azevedo Patrocínio; Lissiana Magna Vasconcelos Aguiar; Glauce Socorro de Barros Viana; Silvânia Maria Mendes Vasconcelos

This study aimed to investigate behavioral and neurochemical effects of α-lipoic acid (100 mg/kg or 200 mg/kg) alone or associated with L-DOPA using an animal model of Parkinsons disease induced by stereotaxic injection of 6-hydroxydopamine (6-OHDA) in rat striatum. Motor behavior was assessed by monitoring body rotations induced by apomorphine, open field test and cylinder test. Oxidative stress was accessed by determination of lipid peroxidation using the TBARS method, concentration of nitrite and evaluation of catalase activity. α-Lipoic acid decreased body rotations induced by apomorphine, as well as caused an improvement in motor performance by increasing locomotor activity in the open field test and use of contralateral paw (in the opposite side of the lesion produced by 6-OHDA) at cylinder test. α-lipoic acid showed antioxidant effects, decreasing lipid peroxidation and nitrite levels and interacting with antioxidant system by decreasing of endogenous catalase activity. Therefore, α-lipoic acid prevented the damage induced by 6-OHDA or by chronic use of L-DOPA in dopaminergic neurons, suggesting that α-lipoic could be a new therapeutic target for Parkinsons disease prevention and treatment.


Journal of Affective Disorders | 2017

Brain antioxidant effect of mirtazapine and reversal of sedation by its combination with alpha-lipoic acid in a model of depression induced by corticosterone

Tatiana de Queiroz Oliveira; Caren Nádia Soares de Sousa; Germana Silva Vasconcelos; Luciene Costa de Sousa; Anneheydi Araújo de Oliveira; Cláudio Felipe Vasconcelos Patrocínio; Ingridy da Silva Medeiros; José Eduardo Ribeiro Honório Júnior; Michael Maes; Danielle Silveira Macêdo; Silvânia Maria Mendes Vasconcelos

BACKGROUND Depression is accompanied by activated neuro-oxidative and neuro-nitrosative pathways, while targeting these pathways has clinical efficacy in depression. This study aimed to investigate the effects of mirtazapine (MIRT) alone and combined with alpha-lipoic acid (ALA) against corticosterone (CORT) induced behavioral and oxidative alterations. METHODS Male mice received vehicle or CORT 20mg/kg during 14 days. From the 15th to 21st days they were divided in groups administered: vehicle, MIRT 3mg/kg or the combinations MIRT+ALA100 or MIRT+ALA200. On the 21st day of treatment, the animals were subjected to behavioral tests. Twenty-four hours after the last drug administration hippocampus (HC) and striatum (ST) were dissected for the determination reduced glutathione (GSH), lipid peroxidation (LP) and nitrite levels. RESULTS CORT induced anxiety- and depressive-like behaviors as observed by increased immobility time in the tail suspension test and decreased sucrose consumption. MIRT or MIRT+ALA are effective in reversing anxiety- and depressive-like behaviors induced by CORT. CORT and MIRT alone prolonged sleeping time and this effect was reversed by MIRT+ALA. CORT significantly increased LP, which was reversed by MIRT or MIRT+ALA. Nitrite levels were increased in CORT-treated animals and reversed by MIRT+ALA200 (HC), MIRT or MIRT+ALA (ST). LIMITATION A relative small sample size and lack of a washout period between drug administration and behavioral testing. CONCLUSIONS MIRT or MIRT+ALA reverse CORT-induced anxiety- and depressive-like behaviors probably via their central antioxidant effects. Augmentation of MIRT with ALA may reverse sedation, an important side effect of MIRT. Randomized controlled studies are needed to examine the clinical efficacy of this combination in human depression.


Biomedicine & Pharmacotherapy | 2017

Effects of standard ethanolic extract from Erythrina velutina in acute cerebral ischemia in mice

Francisca Taciana Sousa Rodrigues; Caren Nádia Soares de Sousa; Naiara Coelho Ximenes; Anália Barbosa Almeida; Lucas Moraes Cabral; Cláudio Felipe Vasconcelos Patrocínio; Aline Holanda Silva; Luzia Kalyne Almeida Moreira Leal; José Eduardo Ribeiro Honório Júnior; Danielle Silveira Macêdo; Silvânia Maria Mendes Vasconcelos

The objective of this study was to verify a possible neuroprotective effect of the ethanolic extract of Erythrina velutina (EEEV). Male Swiss mice were submitted to transient cerebral ischemia by occlusion of both carotid arteries for 30 min and treated for 5 days with EEEV (200 or 400 mg/kg) or Memantine (MEM) 10 mg/kg, with initiation of treatment 2 or 24 h after Ischemia. On the 6th day after the induction of ischemia, the animals were submitted to evaluation of locomotor activity and memory and then sacrificed. The brains were dissected for the removal of the prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) for determination of amino acid concentrations. In the step down and Y-maze tests, ischemia caused damage to the animals and treatment with EEEV or MEM reversed this effect. The animals submitted to ischemia also showed memory deficit in the object recognition test, an effect that was reverted by EEEV400 and MEM10. Amino acid dosage showed an increase in excitatory amino acid concentrations in the PFC of the ischemic animals and this effect was reversed by the treatment with EEEV400/24H. Regarding the inhibitory amino acids, ischemia caused an increase of taurine in the PFC while treatment with MEM10/24H or EEEV400/24H reversed this effect. In HC, an increase in excitatory amino acids was also observed in ischemiated animals having treatment with EEEV200/2H or EEEV400/24H reversed this effect. Similar effect was also observed in the same area in relation to the inhibitory amino acids with treatment with MEM10/24H or EEEV400/24H. In the ST, ischemia was also able to cause an increase in excitatory amino acids that was reversed more efficiently by the treatments with MEM10/24H and EEEV200. Also in this area, an increase of taurine and GABA was observed and only the treatment with EEEV200/2H showed a reversion of this effect. In view of these findings, EEEV presents a neuroprotective effect possibly due to its action on amino acid concentrations, and is therefore a potential therapeutic tool in reducing the damage caused by ischemia.


Neuroscience | 2018

Advantages of the Alpha-lipoic Acid Association with Chlorpromazine in a Model of Schizophrenia Induced by Ketamine in Rats: Behavioral and Oxidative Stress evidences

Luis Rafael Leite Sampaio; Francisco Maurício Sales Cysne Filho; Jamily Cunha de Almeida; Danilo dos Santos Diniz; Cláudio Felipe Vasconcelos Patrocínio; Caren Nádia Soares de Sousa; Manoel Cláudio Azevedo Patrocínio; Danielle Silveira Macêdo; Silvânia Maria Mendes Vasconcelos

Schizophrenia is a chronic mental disorder reported to compromise about 1% of the worlds population. Although its pathophysiological process is not completely elucidated, evidence showing the presence of an oxidative imbalance has been increasingly highlighted in the literature. Thus, the use of antioxidant substances may be of importance for schizophrenia treatment. The objective of this study was to evaluate the behavioral and oxidative alterations by the combination of chlorpromazine (CP) and alpha-lipoic acid (ALA), a potent antioxidant, in the ketamine (KET) model of schizophrenia in rats. Male Wistar rats (200-300 g) were treated for 10 days with saline, CP or ALA alone or in combination with CP previous to KET and the behavioral (open field, Y-maze and PPI tests) and oxidative tests were performed on the last day of treatment. The results showed that KET induced hyperlocomotion, impaired working memory and decreased PPI. CP alone or in combination with ALA prevented KET-induced behavioral effects. In addition, the administration of KET decreased GSH and increased nitrite, lipid peroxidation and myeloperoxidase activity. CP alone or combined with ALA prevented the oxidative alterations induced by KET. In conclusion, the treatment with KET in rats induced behavioral impairments accompanied by hippocampal oxidative alterations, possibly related to NMDA receptors hypofunction. Besides that, CP alone or combined with ALA prevented these effects, showing a beneficial activity as antipsychotic agents.


Metabolic Brain Disease | 2018

The anxiolytic-like effect of 6-styryl-2-pyrone in mice involves GABAergic mechanism of action

Edna Maria Camelo Chaves; Jose Eduardo Ribeiro Honório-Júnior; Caren Nádia Soares de Sousa; Valdécio Silveira Monteiro; Dayanne Terra Tenório Nonato; Leonardo Pimentel Dantas; Ana Silvia Suassuna Carneiro Lúcio; José Maria Barbosa-Filho; Manoel Cláudio Azevedo Patrocínio; Glauce Socorro de Barros Viana; Silvânia Maria Mendes Vasconcelos

The present work aims to investigate the anxiolytic activity of 6-styryl-2-pyrone (STY), obtained from Aniba panurensis, in behavioral tests and amino acids dosage on male Swiss mice. The animals were treated with STY (1, 10 or 20 mg), diazepam (DZP 1 or 2 mg/kg) or imipramine (IMI 30 mg/kg). Some groups were administered with flumazenil, 30 min before administration of the STYor DZP. The behavioral tests performed were open field, rota rod, elevated plus maze (EPM), hole-board (HB) and tail suspension test (TST). After behavioral tests, these animals were sacrificed and had their prefrontal cortex (PFC), hippocampus (HC) and striatum (ST) dissected for assaying amino acids (aspartate- ASP, glutamate- GLU, glycine- GLY, taurine- TAU and Gamma-aminobutyric acid- GABA). In EPM test, STY or DZP increased the number of entries and the time of permanence in the open arms, but these effects were reverted by flumazenil. In the HB test, STY increased the number of head dips however this effect was blocked by flumazenil. The effects of the STY on amino acid concentration in PFC showed increased GLU, GABA and TAU concentrations. In hippocampus, STY increased the concentrations of all amino acids studied. In striatum, STY administration at lowest dose reduced GLU concentrations, while the highest dosage caused the opposite effect. GLI, TAU and GABA concentrations increased with STY administration at highest doses. In conclusion, this study showed that STY presents an anxiolytic-like effect in behavioral tests that probably is related to GABAergic mechanism of action.

Collaboration


Dive into the Caren Nádia Soares de Sousa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L.N. Meneses

Federal University of Ceará

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge