Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carina Heydt is active.

Publication


Featured researches published by Carina Heydt.


Clinical Cancer Research | 2016

Heterogeneous Mechanisms of Primary and Acquired Resistance to Third-Generation EGFR Inhibitors.

Sandra Ortiz-Cuaran; Matthias Scheffler; Dennis Plenker; llona Dahmen; Andreas H. Scheel; Lynnette Fernandez-Cuesta; Lydia Meder; Christine M. Lovly; Thorsten Persigehl; Sabine Merkelbach-Bruse; Marc Bos; Sebastian Michels; Rieke Fischer; Kerstin Albus; Katharina König; Hans-Ulrich Schildhaus; Jana Fassunke; Michaela Angelika Ihle; Helen Pasternack; Carina Heydt; Christian Becker; Janine Altmüller; Hongbin Ji; Christian Müller; Alexandra Florin; Johannes M. Heuckmann; Peter Nuernberg; Sascha Ansén; Lukas C. Heukamp; Johannes Berg

Purpose: To identify novel mechanisms of resistance to third-generation EGFR inhibitors in patients with lung adenocarcinoma that progressed under therapy with either AZD9291 or rociletinib (CO-1686). Experimental Design: We analyzed tumor biopsies from seven patients obtained before, during, and/or after treatment with AZD9291 or rociletinib (CO-1686). Targeted sequencing and FISH analyses were performed, and the relevance of candidate genes was functionally assessed in in vitro models. Results: We found recurrent amplification of either MET or ERBB2 in tumors that were resistant or developed resistance to third-generation EGFR inhibitors and show that ERBB2 and MET activation can confer resistance to these compounds. Furthermore, we identified a KRASG12S mutation in a patient with acquired resistance to AZD9291 as a potential driver of acquired resistance. Finally, we show that dual inhibition of EGFR/MEK might be a viable strategy to overcome resistance in EGFR-mutant cells expressing mutant KRAS. Conclusions: Our data suggest that heterogeneous mechanisms of resistance can drive primary and acquired resistance to third-generation EGFR inhibitors and provide a rationale for potential combination strategies. Clin Cancer Res; 22(19); 4837–47. ©2016 AACR.


Journal of Thoracic Oncology | 2015

Implementation of Amplicon Parallel Sequencing Leads to Improvement of Diagnosis and Therapy of Lung Cancer Patients

Katharina König; Martin Peifer; Jana Fassunke; Michaela Angelika Ihle; Helen Künstlinger; Carina Heydt; Katrin Stamm; Frank Ueckeroth; Claudia Vollbrecht; Marc Bos; Masyar Gardizi; Matthias Scheffler; Lucia Nogova; Frauke Leenders; Kerstin Albus; Lydia Meder; Kerstin Becker; Alexandra Florin; Ursula Rommerscheidt-Fuss; Janine Altmüller; Michael Kloth; Peter Nürnberg; Thomas Henkel; Sven-Ernö Bikár; Martin L. Sos; William J. Geese; Lewis C. Strauss; Yon-Dschun Ko; Ulrich Gerigk; Margarete Odenthal

Introduction: The Network Genomic Medicine Lung Cancer was set up to rapidly translate scientific advances into early clinical trials of targeted therapies in lung cancer performing molecular analyses of more than 3500 patients annually. Because sequential analysis of the relevant driver mutations on fixated samples is challenging in terms of workload, tissue availability, and cost, we established multiplex parallel sequencing in routine diagnostics. The aim was to analyze all therapeutically relevant mutations in lung cancer samples in a high-throughput fashion while significantly reducing turnaround time and amount of input DNA compared with conventional dideoxy sequencing of single polymerase chain reaction amplicons. Methods: In this study, we demonstrate the feasibility of a 102 amplicon multiplex polymerase chain reaction followed by sequencing on an Illumina sequencer on formalin-fixed paraffin-embedded tissue in routine diagnostics. Analysis of a validation cohort of 180 samples showed this approach to require significantly less input material and to be more reliable, robust, and cost-effective than conventional dideoxy sequencing. Subsequently, 2657 lung cancer patients were analyzed. Results: We observed that comprehensive biomarker testing provided novel information in addition to histological diagnosis and clinical staging. In 2657 consecutively analyzed lung cancer samples, we identified driver mutations at the expected prevalence. Furthermore we found potentially targetable DDR2 mutations at a frequency of 3% in both adenocarcinomas and squamous cell carcinomas. Conclusion: Overall, our data demonstrate the utility of systematic sequencing analysis in a clinical routine setting and highlight the dramatic impact of such an approach on the availability of therapeutic strategies for the targeted treatment of individual cancer patients.


PLOS ONE | 2014

Comparison of Pre-Analytical FFPE Sample Preparation Methods and Their Impact on Massively Parallel Sequencing in Routine Diagnostics

Carina Heydt; Jana Fassunke; Helen Künstlinger; Michaela Angelika Ihle; Katharina König; Lukas C. Heukamp; Hans-Ulrich Schildhaus; Margarete Odenthal; Reinhard Büttner; Sabine Merkelbach-Bruse

Over the last years, massively parallel sequencing has rapidly evolved and has now transitioned into molecular pathology routine laboratories. It is an attractive platform for analysing multiple genes at the same time with very little input material. Therefore, the need for high quality DNA obtained from automated DNA extraction systems has increased, especially to those laboratories which are dealing with formalin-fixed paraffin-embedded (FFPE) material and high sample throughput. This study evaluated five automated FFPE DNA extraction systems as well as five DNA quantification systems using the three most common techniques, UV spectrophotometry, fluorescent dye-based quantification and quantitative PCR, on 26 FFPE tissue samples. Additionally, the effects on downstream applications were analysed to find the most suitable pre-analytical methods for massively parallel sequencing in routine diagnostics. The results revealed that the Maxwell 16 from Promega (Mannheim, Germany) seems to be the superior system for DNA extraction from FFPE material. The extracts had a 1.3–24.6-fold higher DNA concentration in comparison to the other extraction systems, a higher quality and were most suitable for downstream applications. The comparison of the five quantification methods showed intermethod variations but all methods could be used to estimate the right amount for PCR amplification and for massively parallel sequencing. Interestingly, the best results in massively parallel sequencing were obtained with a DNA input of 15 ng determined by the NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). No difference could be detected in mutation analysis based on the results of the quantification methods. These findings emphasise, that it is particularly important to choose the most reliable and constant DNA extraction system, especially when using small biopsies and low elution volumes, and that all common DNA quantification techniques can be used for downstream applications like massively parallel sequencing.


Journal of Thoracic Oncology | 2016

Clinicopathological Characteristics of RET Rearranged Lung Cancer in European Patients

Sebastian Michels; Andreas H. Scheel; Matthias Scheffler; Anne M. Schultheis; Oliver Gautschi; Franziska Aebersold; Joachim Diebold; Georg Pall; Sacha I. Rothschild; Lukas Bubendorf; Wolfgang Hartmann; Lukas C. Heukamp; Hans-Ulrich Schildhaus; Jana Fassunke; Michaela Angelika Ihle; Helen Künstlinger; Carina Heydt; Rieke Fischer; Lucia Nogova; Christian Mattonet; Rebecca Hein; Anne Adams; Ulrich Gerigk; Wolfgang Schulte; Heike Lüders; Christian Grohé; Ullrich Graeven; Clemens Müller-Naendrup; Andreas Draube; Karl-Otto Kambartel

Introduction Rearrangements of RET are rare oncogenic events in patients with non–small cell lung cancer (NSCLC). While the characterization of Asian patients suggests a predominance of nonsmokers of young age in this genetically defined lung cancer subgroup, little is known about the characteristics of non‐Asian patients. We present the results of an analysis of a European cohort of patients with RET rearranged NSCLC. Methods Nine hundred ninety‐seven patients with KRAS/EGFR/ALK wildtype lung adenocarcinomas were analyzed using fluorescence in situ hybridization for RET fusions. Tumor specimens were molecularly profiled and clinicopathological characteristics of the patients were collected. Results Rearrangements of RET were identified in 22 patients, with a prevalence of 2.2% in the KRAS/EGFR/ALK wildtype subgroup. Co‐occurring genetic aberrations were detected in 10 patients, and the majority had mutations in TP53. The median age at diagnosis was 62 years (range, 39–80 years; mean ± SD, 61 ± 11.7 years) with a higher proportion of men (59% versus 41%). There was only a slight predominance of nonsmokers (54.5%) compared to current or former smokers (45.5%). Conclusions Patients with RET rearranged adenocarcinomas represent a rare and heterogeneous NSCLC subgroup. In some contrast to published data, we see a high prevalence of current and former smokers in our white RET cohort. The significance of co‐occurring aberrations, so far, is unclear.


PLOS ONE | 2015

MET Gene Copy Number Alterations and Expression of MET and Hepatocyte Growth Factor Are Potential Biomarkers in Angiosarcomas and Undifferentiated Pleomorphic Sarcomas

Katja Schmitz; Hartmut Koeppen; Elke Binot; Jana Fassunke; Helen Künstlinger; Michaela Angelika Ihle; Carina Heydt; Eva Wardelmann; Reinhard Büttner; Sabine Merkelbach-Bruse; Josef Rüschoff; Hans-Ulrich Schildhaus

Soft tissue sarcomas are a heterogeneous group of tumors with many different subtypes. In 2014 an estimated 12,020 newly diagnosed cases and 4,740 soft tissue sarcoma related deaths can be expected in the United States. Many soft tissue sarcomas are associated with poor prognosis and therapeutic options are often limited. The evolution of precision medicine has not yet fully reached the clinical treatment of sarcomas since therapeutically tractable genetic changes have not been comprehensively studied so far. We analyzed a total of 484 adult-type malignant mesenchymal tumors by MET fluorescence in situ hybridization and MET and hepatocyte growth factor immunohistochemistry. Eleven different entities were included, among them the most common and clinically relevant subtypes and tumors with specific translocations or complex genetic changes. MET protein expression was observed in 2.6% of the cases, all of which were either undifferentiated pleomorphic sarcomas or angiosarcomas, showing positivity rates of 14% and 17%, respectively. 6% of the tumors showed hepatocyte growth factor overexpression, mainly seen in undifferentiated pleomorphic sarcomas and angiosarcomas, but also in clear cell sarcomas, malignant peripheral nerve sheath tumors, leiomyosarcomas and gastrointestinal stromal tumors. MET and hepatocyte growth factor overexpression were significantly correlated and may suggest an autocrine activation in these tumors. MET FISH amplification and copy number gain were present in 4% of the tumors (15/413). Two samples, both undifferentiated pleomorphic sarcomas, fulfilled the criteria for high level amplification of MET, one undifferentiated pleomorphic sarcoma reached an intermediate level copy number gain, and 12 samples of different subtypes were categorized as low level copy number gains for MET. Our findings indicate that angiosarcomas and undifferentiated pleomorphic sarcomas rather than other frequent adult-type sarcomas should be enrolled in screening programs for clinical trials with MET inhibitors. The screening methods should include both in situ hybridization and immunohistochemistry.


Journal of Clinical Pathology | 2017

Use of the GeneReader NGS System in a clinical pathology laboratory: a comparative study

Ulrike Koitzsch; Carina Heydt; Hans Attig; Isabelle Immerschitt; Sabine Merkelbach-Bruse; Alessandro Fammartino; Reinhard Büttner; Yi Kong; Margarete Odenthal

Despite its successful use in academic research, next-generation sequencing (NGS) still represents many challenges for routine clinical adoption due to its inherent complexity and specialised expertise typically required to set-up, test and operate a complete workflow.This study aims to evaluate QIAGENs newly launched GeneReader NGS System solution in a pathology laboratory setting by assessing the systems ease of use, sequencing accuracy and data reproducibility. Our laboratory was able to implement the system and validate its performance using clinical samples in direct comparison to an approved Sanger sequencing platform and to an alternative in-house NGS technology. The QIAGEN workflow focuses on clinically actionable hotspots maximising testing efficiency. Combined with automated upstream sample processing and integrated downstream bioinformatics, it offers a realistic solution for pathology laboratories with limited prior experience in NGS technology.


The Journal of Molecular Diagnostics | 2017

Comparison of Blood Collection Tubes from Three Different Manufacturers for the Collection of Cell-Free DNA for Liquid Biopsy Mutation Testing

Christina Alidousty; Danielle Brandes; Carina Heydt; Svenja Wagener; Maike Wittersheim; Stephan Schäfer; Barbara Holz; Sabine Merkelbach-Bruse; Reinhard Büttner; Jana Fassunke; Anne M. Schultheis

The improvement in sensitive techniques has allowed the detection of tumor-specific aberrations in circulating tumor (ct) DNA. Amplification-refractory mutation system PCR has been used for the analysis of ctDNA to detect resistance-causing mutations in the epidermal growth factor receptor gene (eg, EGFR T790M) in lung cancer patients. So far, Streck tubes have been widely used as standard blood collection tubes. Here, we compared blood collection tubes manufactured by Streck with tubes from Roche and Qiagen regarding their utility in stabilizing ctDNA in plasma samples. Venous blood from healthy donors was collected in tubes from Streck, Roche, and Qiagen. Samples were spiked with artificially fragmented EGFR T790M-mutated DNA and stored for different periods of time or spiked with different DNA amounts before plasma preparation. Extracted ctDNA was analyzed by amplification-refractory mutation system PCR. Mutant DNA, spiked into blood samples from healthy donors at quantities of 1 or 3 ng, was still reliably detectable in all samples after 7 days. EGFR T790M could be detected when spiking was performed with an amount of artificial ctDNA of 0.5 ng when tubes from Roche and Qiagen were used. Blood collection tubes from Roche and Qiagen are highly suitable for ctDNA stabilization and subsequent liquid biopsy testing. Even low ctDNA concentrations allow the detection of somatic mutations.


Virchows Archiv | 2018

The landscape of genetic alterations in ameloblastomas relates to clinical features

Sibel Elif Gültekin; Reem Aziz; Carina Heydt; Burcu Sengüven; Joachim E. Zöller; Ali Farid Safi; Matthias Kreppel; Reinhard Buettner

Ameloblastoma is a mostly benign, but locally invasive odontogenic tumor eliciting frequent relapses and significant morbidity. Recently, mutually exclusive mutations in BRAF and SMO were identified causing constitutive activation of MAPK and hedgehog signaling pathways. To explore further such clinically relevant genotype-phenotype correlations, we here comprehensively analyzed a large series of ameloblastomas (98 paraffin block of 76 patients) with respect to genomic alterations, clinical presentation, and histological features collected from the archives of three different pathology centers in France, Germany, and Turkey. In good agreement with previously published data, we observed BRAF mutations almost exclusively in mandibular tumors, SMO mutations predominantly in maxillary tumors, and single mutations in EGFR, KRAS, and NRAS. KRAS, NRAS, PIK3CA, PTEN, CDKN2A, FGFR, and CTNNB1 mutations co-occurred in the background of either BRAF or SMO mutations. Strikingly, multiple mutations were exclusively observed in European patients, in solid ameloblastomas and were associated with a very high risk for recurrence. In contrast, tumors with a single BRAF mutation revealed a lower risk for relapse. We here establish a comprehensive landscape of mutations in the MAPK and hedgehog signaling pathways relating to clinical features of ameloblastoma. Our data suggest that ameloblastomas harboring single BRAF mutations are excellent candidates for neo-adjuvant therapies with combined BRAF/MEK inhibitors and that the risk of recurrence maybe stratified based on the mutational spectrum.


Oncotarget | 2018

Novel approaches against epidermal growth factor receptor tyrosine kinase inhibitor resistance

Carina Heydt; Sebastian Michels; Kenneth S. Thress; Sven Bergner; Jürgen Wolf; Reinhard Buettner

Background The identification and characterization of molecular biomarkers has helped to revolutionize non-small-cell lung cancer (NSCLC) management, as it transitions from target-focused to patient-based treatment, centered on the evolving genomic profile of the individual. Determination of epidermal growth factor receptor (EGFR) mutation status represents a critical step in the diagnostic process. The recent emergence of acquired resistance to “third-generation” EGFR tyrosine kinase inhibitors (TKIs) via multiple mechanisms serves to illustrate the important influence of tumor heterogeneity on prognostic outcomes in patients with NSCLC. Design This literature review examines the emergence of TKI resistance and the course of disease progression and, consequently, the clinical decision-making process in NSCLC. Results Molecular markers of acquired resistance, of which T790M and HER2 or MET amplifications are the most common, help to guide ongoing treatment past the point of progression. Although tissue biopsy techniques remain the gold standard, the emergence of liquid biopsies and advances in analytical techniques may eventually allow “real-time” monitoring of tumor evolution and, in this way, help to optimize targeted treatment approaches. Conclusions The influence of inter- and intra-tumor heterogeneity on resistance mechanisms should be considered when treating patients using resistance-specific therapies. New tools are necessary to analyze changes in heterogeneity and clonal composition during drug treatment. The refinement and standardization of diagnostic procedures and increased accessibility to technology will ultimately help in personalizing the management of NSCLC.


The Journal of Pathology: Clinical Research | 2017

KRAS mutation in papillary fibroelastoma: a true cardiac neoplasm?: KRAS mutation in papillary fibroelastoma

Maike Wittersheim; Carina Heydt; Fabian Hoffmann; Reinhard Büttner

Primary cardiac tumours are rare and mostly benign lesions. Recent publications report that cardiac papillary fibroelastomas are the most common benign primary heart tumour, outnumbering myxomas. However, there is no consensus about their aetiology. We investigated the molecular profile of these tumours using next generation sequencing in a cohort of 16 cases. Eleven of 14 (79%) analysable tumours showed mutations of the KRAS oncogene. Our results provide unambiguous evidence that a significant proportion of these lesions are genuine neoplastic tumours caused by an oncogenic driver mutation.

Collaboration


Dive into the Carina Heydt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge