Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carina M. Rivolta is active.

Publication


Featured researches published by Carina M. Rivolta.


Molecular and Cellular Endocrinology | 2010

Genetics and phenomics of hypothyroidism and goiter due to thyroglobulin mutations

Héctor M. Targovnik; Sebastián A. Esperante; Carina M. Rivolta

Thyroglobulin (TG) defects due to TG gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. This dyshormonogenesis displays a wide phenotype variation and is characterized usually by: the presence of congenital goiter or goiter appearing shortly after birth, high (131)I uptake, negative perchlorate discharge test, low serum TG and elevated serum TSH with simultaneous low serum T(4) and low, normal or high serum T(3). Mutations in TG gene have been also reported associated with endemic and euthyroid nonendemic simple goiter. TG gene defects are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous for mutations. Up to now, 50 mutations have been identified and characterized in the human TG: 23 missense mutations, 10 nonsense mutations, 5 single and 1 large nucleotide deletions, 1 single nucleotide insertion and 10 splice site mutations. The functional consequences of this mutations could be structural changes in the protein molecule that alter the normal protein folding, assembly and biosynthesis of thyroid hormones, leading to a marked reduction in the ability to export the protein from the endoplasmic reticulum.


Thyroid | 2001

Congenital Goiter with Hypothyroidism Caused by a 5′ Splice Site Mutation in the Thyroglobulin Gene

Héctor M. Targovnik; Carina M. Rivolta; Fernando Mendive; Christian M. Moya; Jussara Vono; Geraldo Medeiros-Neto

In this work we have extended our initial molecular studies of a consanguineous family with two affected goitrous siblings (H.S.N. and Ac.S.N.) with defective thyroglobulin (Tg) synthesis and secretion because of a homozygotic deletion of a fragment of 138 nucleotides (nt) in the central region of the Tg mRNA, identified previously in H.S.N. In order to identify the intron/exon boundaries and to analyze the regions responsible for pre-mRNA processing corresponding to a 138 nt deletion, we performed a screening of a human genomic library. The intron/exon junction sequences were determined from one positive clone by sequencing both strands of the DNA template. The results showed that the deletion mapped between positions 5549 and 5686 of the Tg mRNA and corresponded to exon 30. The positions of the exon limits differed by three nucleotides from the previously reported data obtained from direct sequencing of the deleted reverse transcriptase-polymerase chain reaction fragment from H.S.N. These variations are because the intron/exon junctions in this region were not available at the time when the deletion was first described. The deletion does not affect the reading frame of the resulting mRNA and is potentially fully translatable into a Tg polypeptide chain that is shortened by 46 residues. The same 138 nt deletion was observed in reverse transcriptase-polymerase chain reaction studies performed in the thyroid tissues from Ac.S.N. Genomic DNA analysis showed that a G to T transversion was observed at position +1 in the donor site of intron 30. Both affected patients (H.S.N. and Ac.S.N.) are homozygous for the mutation whereas the normal sister (At.S.N.) had a normal allele pattern. The functional consequences of the deletion are related to structural changes in the protein molecule that either could modify the normal routing of the translation product through the membrane system of the cell or could impair the coupling reaction. Probably the mutant Tg polypeptide might be functionally active in the production of thyroid hormone, because in the presence of a normal iodine ingestion (approximately 150 microg/day), Ac.S.N. was able to maintain normal serum levels of total triiodothyronine (T3) associated with relatively low serum total thyroxine (T4) with normal somatic development without signs of brain damage.


Clinical Endocrinology | 2007

Congenital hypothyroidism with goitre caused by new mutations in the thyroglobulin gene

Mariela Caputo; Carina M. Rivolta; Sebastián A. Esperante; Laura Gruñeiro-Papendieck; Ana Chiesa; Claudia G. Pellizas; Rogelio González-Sarmiento; Héctor M. Targovnik

Context  Thyroid dyshormonogenesis is associated with mutations in the thyroglobulin (TG) gene and characterized by normal organification of iodide and low serum TG. These mutations give rise to congenital goitrous hypothyroidism, transmitted in an autosomal recessive mode.


Hormone Research in Paediatrics | 2011

Thyroglobulin Gene Mutations in Congenital Hypothyroidism

Héctor M. Targovnik; Cintia E. Citterio; Carina M. Rivolta

Human thyroglobulin (TG) gene is a single copy gene, 270 kb long, that maps on chromosome 8q24.2–8q24.3 and contains an 8.5-kb coding sequence divided into 48 exons. TG is exclusively synthesized in the thyroid gland and represents a highly specialized homodimeric glycoprotein for thyroid hormone biosynthesis. Mutations in the TG gene lead to permanent congenital hypothyroidism. The presence of low TG level and also normal perchlorate discharge test in a goitrous individual suggest a TG gene defect. Until now, 52 mutations have been identified and characterized in the human TG gene with functional impact such as structural changes in the protein that alter the normal protein folding, assembly and biosynthesis of thyroid hormones. 11 of the mutations affect splicing sites, 11 produce premature stop codons, 23 lead to amino acid changes, 6 deletions (5 single and 1 involving a large number of nucleotides) and 1 single nucleotide insertion. TG mutations are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous. The p.R277X, p.C1058R, p.C1977S, p.R1511X, p.A2215D and p.R2223H mutations are the most frequently identified TG mutations. This mini-review focuses on genetic and clinical aspects of TG gene defects.


Clinical Endocrinology | 2008

Identification and characterization of four PAX8 rare sequence variants (p.T225M, p.L233L, p.G336S and p.A439A) in patients with congenital hypothyroidism and dysgenetic thyroid glands

Sebastián A. Esperante; Carina M. Rivolta; Lucrecia Miravalle; Viviana Herzovich; Sonia Iorcansky; Marco Baralle; Héctor M. Targovnik

Context  Thyroid dysgenesis may be associated with mutations in the paired box transcription factor 8 (PAX8) gene and is characterized by congenital hypothyroidism transmitted in an autosomal dominant mode.


Thyroid | 2002

Genotyping and Characterization of Two Polymorphic Microsatellite Markers Located Within Introns 29 and 30 of the Human Thyroglobulin Gene

Carina M. Rivolta; Christian M. Moya; Fernando Mendive; Héctor M. Targovnik

The purpose of the present work was to characterize two new polymorphic microsatellite markers in the thyroglobulin gene. TGrI29 and TGrI30 repeats are located within introns 29 and 30, respectively. Genetic studies were carried out by using polymerase chain reaction (PCR) followed by denaturing polyacrilamide gel electrophoresis. TGrI29 exhibited clearly 4 distinguishable alleles ranging from 197 to 203 base pair (bp) in length and TGrI30 showed 8 alleles ranging from 502 to 542 bp. We characterized the two markers by determinating allele frequencies and measures of variation. The heterozygosities (HET) observed of TGrI29 and TGrI30 were 0.859 and 0.522, respectively. The polymorphism information contents (PIC) were 0.471 and 0.434, respectively. No significant differences from Hardy-Weinberg values were found for these two systems. The PCR products of each allele were cloned using the pGEM-T Easy vector and directly sequenced by Taq polymerase-based chain terminator method. Sequencing analysis indicated that both loci are complex repeats, TGrI29 containing two types of variable motifs (tc)n and (tg)n, and TGrI30 a tetra-nucleotide tandem units (atcc)n. In two TGrI29 alleles and one TGrI30 allele were found two different subtypes in each one, with the same molecular weights but different distribution of the tandem repeats. In conclusion, both microsatellites analyzed are highly informative polymorphic markers and can be used in linkage studies in families with congenital hypothyroidism or autoimmunity thyroid diseases.


Best Practice & Research Clinical Endocrinology & Metabolism | 2017

Iodide handling disorders (NIS, TPO, TG, IYD)

Héctor M. Targovnik; Cintia E. Citterio; Carina M. Rivolta

Iodide Handling Disorders lead to defects of the biosynthesis of thyroid hormones (thyroid dyshormonogenesis, TD) and thereafter congenital hypothyroidism (CH), the most common endocrine disease characterized by low levels of circulating thyroid hormones. The prevalence of CH is 1 in 2000-3000 live births. Prevention of CH is based on prenatal diagnosis, carrier identification, and genetic counseling. In neonates a complete diagnosis of TD should include clinical examination, biochemical thyroid tests, thyroid ultrasound, radioiodine or technetium scintigraphy and perchlorate discharge test (PDT). Biosynthesis of thyroid hormones requires the presence of iodide, thyroid peroxidase (TPO), a supply of hydrogen peroxide (DUOX system), an iodine acceptor protein, thyroglobulin (TG), and the rescue and recycling of iodide by the action of iodotyrosine deiodinase or iodotyrosine dehalogenase 1 (IYD or DEHAL1). The iodide transport is a two-step process involving transporters located either in the basolateral or apical membranes, sodium iodide symporter (NIS) and pendrin (PDS), respectively. TD has been linked to mutations in the solute carrier family 5, member 5 transporter (SLC5A5, encoding NIS), solute carrier family 26, member 4 transporter (SLC26A4, encoding PDS), TPO, DUOX2, DUOXA2, TG and IYD genes. These mutations produce a heterogeneous spectrum of CH, with an autosomal recessive inheritance. Thereafter, the patients are usually homozygous or compound heterozygous for the gene mutations and the parents, carriers of one mutation. In the last two decades, considerable progress has been made in identifying the genetic and molecular causes of TD. Recent advances in DNA sequencing technology allow the massive screening and facilitate the studies of phenotype variability. In this article we included the most recent data related to disorders caused by mutations in NIS, TPO, TG and IYD.


Neurological Research | 1998

EXPRESSION OF C-MYC AND C-FOS AND BINDING SITES FOR ESTRADIOL AND PROGESTERONE IN HUMAN PITUITARY TUMORS

Gloria Machiavelli; Carina M. Rivolta; Rosa Artese; Armando Basso; José Burdman

We studied the concentration of mRNA from the oncogenes c-myc and c-fos in human pituitary adenomas by Northern blot hybridization (35 somatotrophinomas, 9 prolactinomas, 21 nonsecreting and 3 adrenocorticotrophinomas). The concentration of estrogens and progesterone receptors was also investigated. The levels of c-myc and c-fos mRNA was higher in nonsecreting tumors which were generally the largest and had a higher percentage of recurrence after surgery than the other groups. High concentration of estrogen receptors was observed in tumors derived from cells which are normally the target of this hormone, mainly prolactinomas. They were also present in somatotrophic and nonsecreting adenomas, related to the presence of prolactin or gonadotrophin cells in these tumors. The presence of estrogen receptors indicates that the tumor cells maintain their differentiation and a good prognosis as is the case for prolactinomas. We did not find any relationship between estrogen receptors and the concentration of c-myc and c-fos oncogenes. Larger adenomas (mainly nonsecreting) had higher levels of c-myc and c-fos mRNA than the other tumors and they had an important percentage of recurrence after surgery. It is clear that tumor size is related to the outcome after surgery and that nonsecreting adenomas are usually large because of the late diagnosis. However two large somatotrophinomas with extrasellar expansion also had overexpression of both oncogenes and both relapsed after surgery.


Molecular Diagnosis | 2004

A novel 1297–1304delGCCTGCCA mutation in the exon 10 of the thyroid hormone receptor β gene causes resistance to thyroid hormone

Carina M. Rivolta; M. Susana Mallea Gil; Carolina Ballarino; M. Carolina Ridruejo; Carlos Mariano Miguel; Silvia Gimenez; Silvia S. Bernacchi; Héctor M. Targovnik

AbstractIntroduction: Resistance to the thyroid hormone (RTH) is an inherited syndrome of reduced tissue responsiveness to hormonal action caused by mutations located in the ligand-binding domain and adjacent hinge region of the thyroid hormone receptor β (TRβ) gene. Patient: The patient in this study, a 42-year-old Caucasian male, came to medical attention because he experienced atrial fibrillation. Clinical evaluation showed a small and diffuse goiter and biochemical tests revealed markedly elevated concentrations of total T4, total T3, and free T4, normal thyroid-stimulating hormone (TSH) values and slightly increased I131 thyroid uptake at 24 hours. The thyroperoxidase, thyroglobulin, and TSH receptor antibodies were positive. He was treated with cabergoline plus methimazole. This treatment was stopped because of the inconsistent response, monotherapy with tri-iodothyroacetic acid (TRIAC) was then prescribed after molecular diagnosis confirmed RTH syndrome. Methods: The exons 9 and 10 of the TRβ gene, including splicing signals and the flanking intronic regions of each intron, were amplified with PCR. DNA sequences from each amplified fragment were performed with the Taq polymerase-based chain terminator method and using the specific TRβ forward and reverse primers. Results: Direct sequence analysis of the exons 9 and 10 of the TRβ gene revealed an eight basepair deletion, 1297–1304delGCCTGCCA in exon 10. The mutation produces a frameshift at amino acid 433 and introduces a stop codon TGA at position 461, 85 nucleotides downstream from deletion. This alteration was not detected in either the father or mother of the patient, suggesting a de novo mutation that was confirmed by DNA fingerprint analysis. Conclusions: In the present study we have identified a novel sporadic mutation corresponding to 1297–1304delGCCTGCCA deletion in the activating function 2 (AF-2) region of TRβ. To our knowledge, this is the first time that the presence of a partial deletion of eight nucleotides in the TRβ has been reported.


Molecular Diagnosis | 2005

Nonsense-associated alternative splicing of the human thyroglobulin gene.

Fernando M. Mendive; Carina M. Rivolta; Rogelio González-Sarmiento; Geraldo Medeiros-Neto; Héctor M. Targovnik

AbstractIntroduction: We have described in previous articles a nonsense mutation (4588C>T, R1511X) in exon 22 of the thyroglobulin (TG) gene in a member of a family with a complex history of congenital goiter. In the mutated thyroid gland, full-length thyroglobulin mRNA is almost undetectable. However, a smaller transcript is detected in which the mutated exon 22 is skipped and the reading frame restored. It is conceivable that alternative splicing might be a mechanism involved in the rescue of nonsense mutations. Methods: To investigate whether the detection of the alternative mRNA is due to an increase in its concentration or its preferential amplification during reverse transcriptase-PCR in the absence of the normal full-length mRNA competitor, we set up an assay in which the competitor mRNA was provided. We also studied the effect of the 4588C>T mutation on exon definition and processing using wild-type and mutated minigenes. Results: The detection of the alternative mRNA lacking exon 22 is not caused by the absence of the full-length competitor. In contrast, our results demonstrate that the alternative transcript preferentially accumulates in the mutated thyroid at a level similar to the full-length transcript in control tissue. Transient expression experiments with wild-type and mutated minigenes indicate that the mutated exon is as efficiently spliced as the wild-type, suggesting that the 4588C>T mutation does not interfere with exon 22 definition and processing. Conclusions: The alternative splicing of the TG gene described in this article constitutes a new case of nonsense-associated alternative splicing. We have shown that the mutation itself does not interfere with exon definition and processing in vitro. Our results support the hypothesis that the alternative splicing of the mutated exon is driven by the interruption of the reading frame.

Collaboration


Dive into the Carina M. Rivolta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian M. Moya

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Ana Chiesa

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Viviana Varela

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Laura Gruñeiro-Papendieck

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge