Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carina Olsson is active.

Publication


Featured researches published by Carina Olsson.


Carbohydrate Polymers | 2014

Influence of water on swelling and dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate

Carina Olsson; Alexander Idström; Lars Nordstierna; Gunnar Westman

In this study the effect of residual coagulation medium (water) on cellulose dissolution in an ionic liquid is discussed. Solubility of dissolving grade pulp; HWP and SWP, and microcrystalline cellulose in binary solvents, mixtures of 1-ethyl-3-methyl-imidazolium acetate and water, was investigated by turbidity measurements, light microscopy, rheometry, and CP/MAS (13)C-NMR spectroscopy. The viscoelastic properties of the cellulose solutions imply that residual water affect the cellulose dissolution. However, it is not obvious that this always necessarily poses serious drawbacks for the solution properties or that the effects are as severe as previously believed. Turbidity measurements, viscosity data and crystallinity of the regenerated cellulose correlated well and an increased conversion to cellulose II was found at low water and cellulose contents with an apparent maximum of conversion at 2-5 wt% water. At high water content, above 10 wt%, dissolution and conversion was largely inhibited.


Cellulose | 2013

Modification of crystallinity and pore size distribution in coagulated cellulose films

Åsa Östlund; Alexander Idström; Carina Olsson; Per Tomas Larsson; Lars Nordstierna

In this study the effects of altering the coagulation medium during regeneration of cellulose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate, were investigated using solid-state NMR spectroscopy and NMR cryoporometry. In addition, the influence of drying procedure on the structure of regenerated cellulose was studied. Complete conversion of the starting material into regenerated cellulose was seen regardless of the choice of coagulation medium. Coagulation in water predominantly formed cellulose II, whereas coagulation in alcohols mainly generated non-crystalline structures. Subsequent drying of the regenerated cellulose films, induced hornification effects in the form of irreversible aggregation. This was indicated by solid-state NMR as an increase in signal intensity originating from crystalline structures accompanied by a decrease of signal intensity originating from cellulose surfaces. This phenomenon was observed for all used coagulants in this study, but to various degrees with regard to the polarity of the coagulant. From NMR cryoporometry, it was concluded that drying induced hornification generates an increase of nano-sized pores. A bimodal pore size distribution with pore radius maxima of a few nanometers was observed, and this pattern increased as a function of drying. Additionally, cyclic drying and rewetting generated a narrow monomodal pore size pattern. This study implies that the porosity and crystallinity of regenerated cellulose can be manipulated by the choice of drying condition.


Cellulose - Fundamental Aspects | 2013

Direct Dissolution of Cellulose: Background, Means and Applications

Carina Olsson; Gunnar Westman

Being the main structural component in plants, cellulose is by far the most abundant organic polymer on earth. The highest quantity of cellulose is found in the secondary walls of higher plants, such as wood, were the polymer is incorporated in a matrix of lignin and shorter heteropolysaccharides such as hemicelluloses and pectins. Cellulose is also found in some fungi and algae, in the marine animal family of tunicates and as an extracellular product of some bacteria. In theory, cellulose is an inexhaustible resource and yields 1.5x1012 tons of biomass every year. Despite the fact that cellulose is available in any plant, wood pulp provides the main part of cellulose used today, for example in board, paper and textile. Historically, cellulose has been used for as long as man has existed, first as fuel and shelter and later for clothing and writing material such as papyrus. Cotton was domesticated thousands of years ago and the soft fiber surrounding the cotton seed was used for making textiles in many parts of the world. Cotton is still the main source of cellulose for textile but the demand for wood based raw material is increasing due to the environmental drawbacks associated with cotton cultivation and processing, such as high water and pesticide usage. Both cotton and wood based cellulose can also be used as the basis for cellulose derivatives such as cellulose ethers and cellulose esters. These are widely used, for example in pharmaceuticals, food, construction materials and paint. When it comes to sustainable raw materials for future demands on fuel, chemicals and materials, both bulk and high performance, cellulose is definitely a resource of great importance and still today one that is underutilized.


Journal of Materials Science | 2014

Effect of methylimidazole on cellulose/ionic liquid solutions and regenerated material therefrom

Carina Olsson; Artur Hedlund; Alexander Idström; Gunnar Westman

Cellulose, especially wood-based cellulose, is increasingly important for making everyday materials such as man-made-regenerated textile fibers, produced via dissolution and subsequent precipitation. In this paper, the effect of cosolvents in ionic liquid-facilitated cellulose dissolution is discussed. Both microcrystalline cellulose and dissolving grade hardwood pulp were studied. Three different cosolvents in combination with ionic liquid were evaluated using turbidity measurements and viscosity. The ionic liquid precursor N-methylimidazole proved to be a promising cosolvent candidate and was thus selected for further studies together with the ionic liquid 1-ethyl-3-methylimidazolium acetate. Results show that dissolution rate can be increased by cosolvent addition, and the viscosity can be significantly reduced. The solutions were stable over time at room temperature and could be converted to regenerated textile fibers with good mechanical properties via airgap spinning and traditional wet spinning. Fibers spun from binary solvents exhibited significantly higher crystallinity than the fibers from neat ionic liquid.


Cellulose | 2017

On the dissolution of cellulose in tetrabutylammonium acetate/dimethyl sulfoxide : a frustrated solvent

Alexander Idström; Luigi Gentile; Marta Gubitosi; Carina Olsson; Björn Stenqvist; Mikael Lund; Karl Erik Bergquist; Ulf Olsson; Tobias Köhnke; Erik Bialik

We have found that the dissolution of cellulose in the binary mixed solvent tetrabutylammonium acetate/dimethyl sulfoxide follows a previously overlooked near-stoichiometric relationship such that one dissolved acetate ion is able to dissolve an amount of cellulose corresponding to about one glucose residue. The structure and dynamics of the resulting cellulose solutions were investigated using small-angle X-ray scattering (SAXS) and nuclear magnetic resonance techniques as well as molecular dynamics simulation. This yielded a detailed picture of the dissolution mechanism in which acetate ions form hydrogen bonds to cellulose and causes a diffuse solvation sheath of bulky tetrabutylammonium counterions to form. In turn, this leads to a steric repulsion that helps to keep the cellulose chains apart. Structural similarities to previously investigated cellulose solutions in aqueous tetrabutylammonium hydroxide were revealed by SAXS measurement. To what extent this corresponds to similarities in dissolution mechanism is discussed.


Journal of Physical Chemistry B | 2017

Understanding the Inhibiting Effect of Small-Molecule Hydrogen Bond Donors on the Solubility of Cellulose in Tetrabutylammonium Acetate/DMSO

Jenny Bengtsson; Carina Olsson; Artur Hedlund; Tobias Köhnke; Erik Bialik

Certain ionic liquids are powerful cellulose solvents, but tend to be less effective when small-molecule hydrogen bond donors are present. This is generally attributed to competition with cellulose for hydrogen bonding opportunities to the anion of the ionic liquid. We show that the solubility of cellulose in dimethyl sulfoxide solutions of tetrabutylammonium acetate is less strongly affected by water than by ethanol on a molar basis, contrary to what can be expected based on hydrogen bond stoichiometry. Molecular dynamics simulations indicate that the higher tolerance to water is due to water-cellulose interactions that improves solvation of cellulose and, thereby, marginally favors dissolution. Through Kirkwood-Buff theory we show that water, but not ethanol, improves the solvent quality of DMSO and partly compensates for the loss of acetate-cellulose hydrogen bonds.


Holzforschung | 2018

Improved yield of carbon fibres from cellulose and kraft lignin

Andreas Bengtsson; Jenny Bengtsson; Carina Olsson; Maria Sedin; Kerstin Jedvert; Hans Theliander; Elisabeth Sjöholm

Abstract To meet the demand for carbon-fibre-reinforced composites in lightweight applications, cost-efficient processing and new raw materials are sought for. Cellulose and kraft lignin are each interesting renewables for this purpose due to their high availability. The molecular order of cellulose is an excellent property, as is the high carbon content of lignin. By co-processing cellulose and lignin, the advantages of these macromolecules are synergistic for producing carbon fibre (CF) of commercial grade in high yields. CFs were prepared from precursor fibres (PFs) made from 70:30 blends of softwood kraft lignin (SW-KL) and cellulose by dry-jet wet spinning with the ionic liquid (IL) 1-ethyl-3-methylimidazolium acetate ([EMIm][OAc]) as a solvent. In focus was the impact of the molecular mass of lignin and the type of cellulose source on the CF yield and properties, while membrane-filtrated kraft lignin and cellulose from dissolving kraft pulp and fully bleached paper-grade SW-KP (kraft pulp) served as sources. Under the investigated conditions, the yield increased from around 22% for CF from neat cellulose to about 40% in the presence of lignin, irrespective of the type of SW-KL. The yield increment was also higher relative to the theoretical one for CF made from blends (69%) compared to those made from neat celluloses (48–51%). No difference in the mechanical properties of the produced CF was observed.


Journal of Applied Polymer Science | 2013

Wet spinning of cellulose from ionic liquid solutions–viscometry and mechanical performance

Carina Olsson; Gunnar Westman


Bioresources | 2013

Solvation Behavior of Cellulose and Xylan in the MIM/EMIMAc Ionic Liquid Solvent System: Parameters for Small-Scale Solvation

Susanne Bylin; Carina Olsson; Gunnar Westman; Hans Theliander


Archive | 2014

Cellulose processing in ionic liquid based solvents

Carina Olsson

Collaboration


Dive into the Carina Olsson's collaboration.

Top Co-Authors

Avatar

Gunnar Westman

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Tobias Köhnke

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Alexander Idström

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Gubitosi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Hans Theliander

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge