Carina W. Lourens
University of Pretoria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carina W. Lourens.
Journal of Virological Methods | 2010
Melvyn Quan; Carina W. Lourens; N.J. MacLachlan; Ian A. Gardner; Alan John Guthrie
Nucleotide sequences of 52 South African isolates of African horse sickness virus (AHSV) collected during 2004-2005 and including viruses of all nine AHSV serotypes, were used to design and develop a duplex real-time reverse transcription quantitative PCR (RT-PCR) assay targeting the VP7 (S8) and NS2 (S9) genes of AHSV. The assay was optimized for detection of AHSV in fresh and frozen blood of naturally infected horses. Assay performance was enhanced using random hexamers rather than gene-specific primers for RT, and with denaturation of double-stranded RNA in the presence of random hexamers. The assay was efficient with a linear range of at least five orders of magnitude. The analytical sensitivity of the assay was 132 copies of the target genes (4125 copies per ml of blood), and the assay was at least 10-fold more sensitive than virus isolation on BHK-21 cells. The assay was also highly specific because it did not detect related orbiviruses, such as bluetongue and equine encephalosis viruses.
Journal of Virological Methods | 2013
Alan John Guthrie; N. James MacLachlan; Christopher Joone; Carina W. Lourens; Camilla T. Weyer; Melvyn Quan; Mpho S. Monyai; Ian A. Gardner
Blood samples collected from 503 suspect cases of African horse sickness (AHS) and another 503 from uninfected, unvaccinated South African horses, as well as 98 samples from horses from an AHS free country, were tested with an AHS virus (AHSV) specific duplex real-time reverse transcription quantitative PCR (RT-qPCR) assay and virus isolation (VI). The diagnostic sensitivity and specificity of this AHSV RT-qPCR assay and VI were estimated using a 2-test 2-population Bayesian latent class model which made no assumptions about the true infection status of the tested animals and allowed for the possibility of conditional dependence (correlation) in test results. Median diagnostic sensitivity and specificity of the AHSV RT-qPCR were 97.8% and 99.9%, respectively. Median diagnostic specificity of virus isolation was >99% whereas the estimated diagnostic sensitivity was 44.2%. The AHSV RT-qPCR assay provides for rapid, high-throughput analysis of samples, and is both analytically and diagnostically sensitive and specific. This assay is potentially highly useful for demonstrating freedom or infection of horses with AHSV, thus it is appropriate that its reproducibility be evaluated in other laboratories as a global standard for detection of AHSV.
Equine Veterinary Journal | 2013
Camilla T. Weyer; Melvyn Quan; Christopher Joone; Carina W. Lourens; Nigel James Maclachlan; Alan John Guthrie
To determine whether subclinical cases, together with clinical cases, of African horse sickness (AHS) occur in immunised horses in field conditions, whole blood samples were collected and rectal temperatures recorded weekly from 50 Nooitgedacht ponies resident in open camps at the Faculty of Veterinary Science, University of Pretoria, Onderstepoort, during 2008-2010. The samples were tested for the presence of African horse sickness virus (AHSV) RNA by a recently developed real-time RT-PCR. It was shown that 16% of immunised horses in an AHS endemic area were infected with AHSV over a 2 year period, with half of these (8%) being subclinically infected. The potential impact of such cases on the epidemiology of AHS warrants further investigation.
Emerging Infectious Diseases | 2016
Camilla T. Weyer; John D. Grewar; Phillippa Burger; Esthea Rossouw; Carina W. Lourens; Christopher Joone; Misha le Grange; Peter Coetzee; Estelle Hildegard Venter; Darren P. Martin; N. James MacLachlan; Alan John Guthrie
Epidemiologic and phylogenetic analyses show repeated outbreaks derived from vaccine viruses.
Equine Veterinary Journal | 2013
Jan Ernst Crafford; Carina W. Lourens; I. Gardner; Nigel James Maclachlan; Alan John Guthrie
REASONS FOR PERFORMING STUDY African horse sickness is an insect-transmitted, noncontagious disease of equids caused by African horse sickness virus (AHSV). Mortality can exceed 90% in fully susceptible horse populations. A live-attenuated (modified live) cell-culture-adapted (MLV) polyvalent AHSV vaccine is widely used to control African horse sickness in endemic areas in southern Africa. Field studies detailing antibody responses of vaccinated horses are lacking. OBJECTIVES To determine antibody titres to the 9 known serotypes of AHSV in a cohort of broodmares that were regularly vaccinated with the MLV AHSV vaccine and to measure the passive transfer and rate of decay of maternal antibody to the individual virus serotypes in foals. METHODS Serum was collected from 15 mares before foaling and from their foals after foaling and monthly thereafter for 6 months. Antibody titres to each of the 9 AHSV serotypes were determined by serum virus neutralisation assay. RESULTS There was marked variation in the antibody response of the mares to individual AHSV serotypes even after repeated vaccination, with consistently higher titre responses to some virus serotypes. Likewise, the duration of maternally derived antibodies in foals differed among serotypes. CONCLUSIONS Data from this study confirm variation of the neutralising antibody response of individual mares to repeated vaccination with polyvalent AHSV vaccine. Virus strains of individual AHSV serotypes included in the vaccine may vary in their inherent immunogenicity. Passively acquired maternal antibodies to AHSV vary markedly among foals born to vaccinated mares, with further variation in the duration of passive immunity to individual AHSV serotypes. POTENTIAL RELEVANCE These data are relevant to the effective utilisation of live-attenuated AHSV vaccines in endemic regions, and potentially to the use of vaccines in response to future incursions of AHSV into previously free regions. Further studies involving a larger population will be required to determine the optimal time for vaccinating foals.
Journal of Virological Methods | 2015
Camilla T. Weyer; Christopher Joone; Carina W. Lourens; Mpho S. Monyai; Otto Koekemoer; John D. Grewar; Antoinette van Schalkwyk; Phelix O.A. Majiwa; N. James MacLachlan; Alan John Guthrie
Blood samples collected as part of routine diagnostic investigations from South African horses with clinical signs suggestive of African horse sickness (AHS) were subjected to analysis with an AHS virus (AHSV) group specific reverse transcription quantitative polymerase chain reaction (AHSV RT-qPCR) assay and virus isolation (VI) with subsequent serotyping by plaque inhibition (PI) assays using AHSV serotype-specific antisera. Blood samples that tested positive by AHSV RT-qPCR were then selected for analysis using AHSV type specific RT-qPCR (AHSV TS RT-qPCR) assays. The TS RT-qPCR assays were evaluated using both historic stocks of the South African reference strains of each of the 9 AHSV serotypes, as well as recently derived stocks of these same viruses. Of the 503 horse blood samples tested, 156 were positive by both AHSV RT-qPCR and VI assays, whereas 135 samples that were VI negative were positive by AHSV RT-qPCR assay. The virus isolates made from the various blood samples included all 9 AHSV serotypes, and there was 100% agreement between the results of conventional serotyping of individual virus isolates by PI assay and AHSV TS RT-qPCR typing results. Results of the current study confirm that the AHSV TS RT-qPCR assays for the identification of individual AHSV serotypes are applicable and practicable and therefore are potentially highly useful and appropriate for virus typing in AHS outbreak situations in endemic or sporadic incursion areas, which can be crucial in determining appropriate and timely vaccination and control strategies.
Vaccine | 2014
Jan Ernst Crafford; Carina W. Lourens; T.K. Smit; Ian A. Gardner; N.J. MacLachlan; Alan John Guthrie
African horse sickness (AHS) is typically a highly fatal disease in susceptible horses and vaccination is currently used to prevent the occurrence of disease in endemic areas. Similarly, vaccination has been central to the control of incursions of African horse sickness virus (AHSV) into previously unaffected areas and will likely play a significant role in any future incursions. Horses in the AHSV-infected area in South Africa are vaccinated annually with a live-attenuated (modified-live virus [MLV]) vaccine, which includes a cocktail of serotypes 1, 3, 4 (bottle 1) and 2, 6-8 (bottle 2) delivered in two separate doses at least 21 days apart. In this study, the neutralising antibody response of foals immunized with this polyvalent MLV AHSV vaccine was evaluated and compared to the response elicited to monovalent MLV AHSV serotypes. Naïve foals were immunized with either the polyvalent MLV AHSV vaccine, or a combination of monovalent MLV vaccines containing individual AHSV serotypes 1, 4, 7 or 8. There was a marked and consistent difference in the immunogenicity of individual virus serotypes contained in the MLV vaccines. Specifically, foals most consistently seroconverted to AHSV-1 and responses to other serotypes were highly variable, and often weak or not detected. The serotype-specific responses of foals given the monovalent MLV vaccines were similar to those of foals given the polyvalent MLV preparation suggesting that there is no obvious enhanced immune response through the administration of a monovalent vaccine as opposed to the polyvalent vaccine.
Journal of The South African Veterinary Association-tydskrif Van Die Suid-afrikaanse Veterinere Vereniging | 2014
Gert J. Venter; Karien Labuschagne; D. Majatladi; Solomon N.B. Boikanyo; Carina W. Lourens; Karen Ebersohn; Estelle Hildegard Venter
In South Africa, outbreaks of African horse sickness (AHS) occur in summer; no cases are reported in winter, from July to September. The AHS virus (AHSV) is transmitted almost exclusively by Culicoides midges (Diptera: Ceratopogonidae), of which Culicoides imicola is considered to be the most important vector. The over-wintering mechanism of AHSV is unknown. In this study, more than 500 000 Culicoides midges belonging to at least 26 species were collected in 88 light traps at weekly intervals between July 2010 and September 2011 near horses in the Onderstepoort area of South Africa. The dominant species was C. imicola. Despite relatively low temperatures and frost, at least 17 species, including C. imicola, were collected throughout winter (June-August). Although the mean number of midges per night fell from > 50 000 (March) to < 100 (July and August), no midge-free periods were found. This study, using virus isolation on cell cultures and a reverse transcriptase polymerase chain reaction (RT-PCR) assay, confirmed low infection prevalence in field midges and that the detection of virus correlated to high numbers. Although no virus was detected during this winter period, continuous adult activity indicated that transmission can potentially occur. The absence of AHSV in the midges during winter can be ascribed to the relatively low numbers collected coupled to low infection prevalence, low virus replication rates and low virus titres in the potentially infected midges. Cases of AHS in susceptible animals are likely to start as soon as Culicoides populations reach a critical level.In South Africa, outbreaks of African horse sickness (AHS) occur in summer; no cases are reported in winter, from July to September. The AHS virus (AHSV) is transmitted almost exclusively by Culicoides midges (Diptera: Ceratopogonidae), of which Culicoides imicola is considered to be the most important vector. The over-wintering mechanism of AHSV is unknown. In this study, more than 500 000 Culicoides midges belonging to at least 26 species were collected in 88 light traps at weekly intervals between July 2010 and September 2011 near horses in the Onderstepoort area of South Africa. The dominant species was C. imicola. Despite relatively low temperatures and frost, at least 17 species, including C. imicola, were collected throughout winter (June-August). Although the mean number of midges per night fell from > 50 000 (March) to < 100 (July and August), no midge-free periods were found. This study, using virus isolation on cell cultures and a reverse transcriptase polymerase chain reaction (RT-PCR) assay, confirmed low infection prevalence in field midges and that the detection of virus correlated to high numbers. Although no virus was detected during this winter period, continuous adult activity indicated that transmission can potentially occur. The absence of AHSV in the midges during winter can be ascribed to the relatively low numbers collected coupled to low infection prevalence, low virus replication rates and low virus titres in the potentially infected midges. Cases of AHS in susceptible animals are likely to start as soon as Culicoides populations reach a critical level.
Genome Announcements | 2015
Alan John Guthrie; Peter Coetzee; Darren P. Martin; Carina W. Lourens; Estelle Hildegard Venter; Camilla T. Weyer; Christopher Joone; Misha le Grange; Cindy Kim Harper; P.G. Howell; N. James MacLachlan
ABSTRACT This is a report of the complete genome sequences of plaque-selected isolates of each of the four virus strains included in a South African commercial tetravalent African horse sickness attenuated live virus vaccine.
Onderstepoort Journal of Veterinary Research | 2015
John Duncan Grewar; Peter N. Thompson; Carina W. Lourens; Alan John Guthrie
Thoroughbred foal body temperature data were collected from shortly after birth until shortly after weaning during the 2007/2008 season on a stud farm in the Western Cape Province of South Africa. Equine encephalosis (EE) caused by EE virus (EEV) serotype 4 (EEV-4) occurred in the foal group during the first autumn after their birth (March and April 2008). A descriptive study was undertaken to provide data on the EEV maternal antibody status, the association between pyrexia and EEV infection, and the incidence of infection amongst the foals prior to and during the episode. This included the frequent capturing of foal body temperature data and regular collection of serum and whole blood during pyretic episodes. Infection by EEV was determined using both virological and serological methods. A high EE incidence of at least 94% occurred amongst the foal cohort, despite the fact that 37% of foals had previously shown maternal antibody to EEV-4. Pyrexia in foals was not directly associated with EE infection and 41% of infected foals showed no detectable pyretic episode. Information obtained from this EE episode showed the high incidence of EEV infection in foals during the first autumn after their birth. Monitoring foal body temperature can alert farmers to outbreaks of infectious disease, such as EE. These results are relevant to the epidemiology of EE and facilitate greater understanding of it as a differential diagnosis of African horse sickness (AHS), given that EE and AHS have similar epidemiologic profiles.