Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carine Alcon is active.

Publication


Featured researches published by Carine Alcon.


The Plant Cell | 2003

HLM1, an Essential Signaling Component in the Hypersensitive Response, Is a Member of the Cyclic Nucleotide–Gated Channel Ion Channel Family

Claudine Balagué; Baiqing Lin; Carine Alcon; Guylaine Flottes; Susanna Malmström; Claudia Köhler; Gunther Neuhaus; Georges Pelletier; Frédéric Gaymard; Dominique Roby

The hypersensitive response (HR) in plants is a programmed cell death that is commonly associated with disease resistance. A novel mutation in Arabidopsis, hlm1, which causes aberrant regulation of cell death, manifested by a lesion-mimic phenotype and an altered HR, segregated as a single recessive allele. Broad-spectrum defense mechanisms remained functional or were constitutive in the mutant plants, which also exhibited increased resistance to a virulent strain of Pseudomonas syringae pv tomato. In response to avirulent strains of the same pathogen, the hlm1 mutant showed differential abilities to restrict bacterial growth, depending on the avirulence gene expressed by the pathogen. The HLM1 gene encodes a cyclic nucleotide–gated channel, CNGC4. Preliminary study of the HLM1/CNGC4 gene pro-duct in Xenopus oocytes (inside-out patch-clamp technique) showed that CNGC4 is permeable to both K+ and Na+ and is activated by both cGMP and cAMP. HLM1 gene expression is induced in response to pathogen infection and some pathogen-related signals. Thus, HLM1 might constitute a common downstream component of the signaling pathways leading to HR/resistance.


The Plant Cell | 2002

Physical and Functional Interaction of the Arabidopsis K+ Channel AKT2 and Phosphatase AtPP2CA

Isabelle Chérel; Erwan Michard; Nadine Platet; Karine Mouline; Carine Alcon; Hervé Sentenac; Jean-Baptiste Thibaud

The AKT2 K+ channel is endowed with unique functional properties, being the only weak inward rectifier characterized to date in Arabidopsis. The gene is expressed widely, mainly in the phloem but also at lower levels in leaf epiderm, mesophyll, and guard cells. The AKT2 mRNA level is upregulated by abscisic acid. By screening a two-hybrid cDNA library, we isolated a protein phosphatase 2C (AtPP2CA) involved in abscisic acid signaling as a putative partner of AKT2. We further confirmed the interaction by in vitro binding studies. The expression of AtPP2CA (β-glucuronidase reporter gene) displayed a pattern largely overlapping that of AKT2 and was upregulated by abscisic acid. Coexpression of AtPP2CA with AKT2 in COS cells and Xenopus laevis oocytes was found to induce both an inhibition of the AKT2 current and an increase of the channel inward rectification. Site-directed mutagenesis and pharmacological analysis revealed that this functional interaction involves AtPP2CA phosphatase activity. Regulation of AKT2 activity by AtPP2CA in planta could allow the control of K+ transport and membrane polarization during stress situations.


The Plant Cell | 2013

In Vivo Intracellular pH Measurements in Tobacco and Arabidopsis Reveal an Unexpected pH Gradient in the Endomembrane System

Alexandre Martinière; Elias Bassil; Elodie Jublanc; Carine Alcon; Maria Reguera; Hervé Sentenac; Eduardo Blumwald; Nadine Paris

This work combines biochemistry and live-cell imaging to perform in vivo pH measurements of different compartments of the endomembrane system in plant cells. It reports that the prevacuolar compartments are more alkaline than the trans-Golgi network and provides evidence that endosomal proton pumps and proton efflux transporters contribute to pH homeostasis. The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH −1.5) and Arabidopsis thaliana root cells (ΔpH −2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H+ ATPase–dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters.


Journal of Biological Chemistry | 2007

Increased functional diversity of plant K+ channels by preferential heteromerization of the shaker-like subunits AKT2 and KAT2.

Jérôme Xicluna; Benoît Lacombe; Ingo Dreyer; Carine Alcon; Linda Jeanguenin; Hervé Sentenac; Jean-Baptiste Thibaud; Isabelle Chérel

Assembly of plant Shaker subunits as heterotetramers, increasing channel functional diversity, has been reported. Here we focus on a new interaction, between AKT2 and KAT2 subunits. The assembly as AKT2/KAT2 heterotetramers is demonstrated by (i) a strong signal in two-hybrid tests with intracytoplasmic C-terminal regions, (ii) the effect of KAT2 on AKT2 subunit targeting in tobacco cells, (iii) the complete inhibition of AKT2 currents by co-expression with a dominant-negative KAT2 subunit in Xenopus oocytes, and reciprocally, and (iv) the appearance, upon co-expression of wild-type AKT2 and KAT2 subunits, of new channel functional properties that cannot be explained by the co-existence of two kinds of homotetrameric channels. In particular, the instantaneous current, characteristic of AKT2, displayed new functional features when compared with those of AKT2 homotetramers: activation by external acidification (instead of inhibition) and weak inhibition by calcium. Single channel current measurements in oocytes co-expressing AKT2 and KAT2 revealed a strong preference for incorporation of subunits into heteromultimers and a diversity of individual channels. In planta, these new channels, which may undergo specific regulations, are likely to be formed in guard cells and in the phloem, where they could participate in the control of membrane potential and potassium fluxes.


The Plant Cell | 2010

The Cytosolic Tail Dipeptide Ile-Met of the Pea Receptor BP80 Is Required for Recycling from the Prevacuole and for Endocytosis

Bruno Saint-Jean; Emilie Seveno-Carpentier; Carine Alcon; Jean-Marc Neuhaus; Nadine Paris

We analyzed trafficking features of the vacuolar sorting receptor BP80, identified a dipeptide retrieval signal Ile-Met, and demonstrated that BP80 undergoes brefeldin A–sensitive endocytic cycling. Ile-Met plays a dual role (1) in the main pathway by preventing the receptor to follow its ligand towards the lytic vacuole and (2) in the alternative route by participating in the receptor endocytosis. Pea (Pisum sativum) BP80 is a vacuolar sorting receptor for soluble proteins and has a cytosolic domain essential for its intracellular trafficking between the trans-Golgi network and the prevacuole. Based on mammalian knowledge, we introduced point mutations in the cytosolic region of the receptor and produced chimeras of green fluorescent protein fused to the transmembrane domain of pea BP80 along with the modified cytosolic tails. By analyzing the subcellular location of these chimera, we found that mutating Glu-604, Asp-616, or Glu-620 had mild effects, whereas mutating the Tyr motif partially redistributed the chimera to the plasma membrane. Replacing both Ile-608 and Met-609 by Ala (IMAA) led to a massive redistribution of fluorescence to the vacuole, indicating that recycling is impaired. When the chimera uses the alternative route, the IMAA mutation led to a massive accumulation at the plasma membrane. Using Arabidopsis thaliana plants expressing a fluorescent reporter with the full-length sequence of At VSR4, we demonstrated that the receptor undergoes brefeldin A–sensitive endocytosis. We conclude that the receptors use two pathways, one leading directly to the lytic vacuole and the other going via the plasma membrane, and that the Ileu-608 Met-609 motif has a role in the retrieval step in both pathways.


Plant Journal | 2011

AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity

Linda Jeanguenin; Carine Alcon; Geoffrey Duby; Martin Boeglin; Isabelle Chérel; Isabelle Gaillard; Sabine Zimmermann; Hervé Sentenac; Anne-Aliénor Véry

A functional Shaker potassium channel requires assembly of four α-subunits encoded by a single gene or various genes from the Shaker family. In Arabidopsis thaliana, AtKC1, a Shaker α-subunit that is silent when expressed alone, has been shown to regulate the activity of AKT1 by forming heteromeric AtKC1-AKT1 channels. Here, we investigated whether AtKC1 is a general regulator of channel activity. Co-expression in Xenopus oocytes of a dominant negative (pore-mutated) AtKC1 subunit with the inward Shaker channel subunits KAT1, KAT2 or AKT2, or the outward subunits SKOR or GORK, revealed that the three inward subunits functionally interact with AtKC1 while the outward ones cannot. Localization experiments in plant protoplasts showed that KAT2 was able to re-locate AtKC1 fused to GFP from endomembranes to the plasma membrane, indicating that heteromeric AtKC1-KAT2 channels are efficiently targeted to the plasma membrane. Functional properties of heteromeric channels involving AtKC1 and KAT1, KAT2 or AKT2 were analysed by voltage clamp after co-expression of the respective subunits in Xenopus oocytes. AtKC1 behaved as a regulatory subunit within the heterotetrameric channel, reducing the macroscopic conductance and negatively shifting the channel activation potential. Expression studies showed that AtKC1 and its identified Shaker partners have overlapping expression patterns, supporting the hypothesis of a general regulation of inward channel activity by AtKC1 in planta. Lastly, AtKC1 disruption appeared to reduce plant biomass production, showing that AtKC1-mediated channel activity regulation is required for normal plant growth.


Journal of Biological Chemistry | 2010

Preferential KAT1-KAT2 Heteromerization Determines Inward K+ Current Properties in Arabidopsis Guard Cells

Anne Lebaudy; François Pascaud; Anne-Aliénor Véry; Carine Alcon; Ingo Dreyer; Jean-Baptiste Thibaud; Benoît Lacombe

Guard cells adjust their volume by changing their ion content due to intense fluxes that, for K+, are believed to flow through inward or outward Shaker channels. Because Shaker channels can be homo- or heterotetramers and Arabidopsis guard cells express at least five genes encoding inward Shaker subunits, including the two major ones, KAT1 and KAT2, the molecular identity of inward Shaker channels operating therein is not yet completely elucidated. Here, we first addressed the properties of KAT1-KAT2 heteromers by expressing KAT1-KAT2 tandems in Xenopus oocytes. Then, computer analyses of the data suggested that coexpression of free KAT1 and KAT2 subunits resulted mainly in heteromeric channels made of two subunits of each type due to some preferential association of KAT1-KAT2 heterodimers at the first step of channel assembly. This was further supported by the analysis of KAT2 effect on KAT1 targeting in tobacco cells. Finally, patch-clamp recordings of native inward channels in wild-type and mutant genotypes strongly suggested that this preferential heteromerization occurs in planta and that Arabidopsis guard cell inward Shaker channels are mainly heteromers of KAT1 and KAT2 subunits.


Plant Signaling & Behavior | 2008

Heteromerization of Arabidopsis Kv channel alpha-subunits : Data and prospects.

Linda Jeanguenin; Anne Lebaudy; Jérôme Xicluna; Carine Alcon; Eric Hosy; Geoffrey Duby; Erwan Michard; Benoît Lacombe; Ingo Dreyer; Jean Baptiste Thibaud

Potassium translocation in plants is accomplished by a large variety of transport systems. Most of the available molecular information on these proteins concerns voltage-gated potassium channels (Kv channels). The Arabidopsis genome comprises nine genes encoding α-subunits of Kv channels. Based on knowledge of their animal homologues, and on biochemical investigations, it is broadly admitted that four such polypeptides must assemble to yield a functional Kv channel. The intrinsic functional properties of Kv channel α-subunits have been described by expressing them in suitable heterologous contexts where homo-tetrameric channels could be characterized. However, due to the high similarity of both the polypeptidic sequence and the structural scheme of Kv channel α-subunits, formation of heteromeric Kv channels by at least two types of α-subunits is conceivable. Several examples of such heteromeric plant Kv channels have been studied in heterologous expression systems and evidence that heteromerization actually occurs in planta has now been published. It is therefore challenging to uncover the physiological role of this heteromerization. Fine tuning of Kv channels by heteromerisation could be relevant not only to potassium transport but also to electrical signaling within the plant.


Plant Physiology | 2014

Distinct Amino Acids in the C-Linker Domain of the Arabidopsis K+ Channel KAT2 Determine Its Subcellular Localization and Activity at the Plasma Membrane

Manuel Nieves-Cordones; Alain Chavanieu; Linda Jeanguenin; Carine Alcon; Wojciech Szponarski; Sebastien Estaran; Isabelle Chérel; Sabine Zimmermann; Hervé Sentenac; Isabelle Gaillard

The C-linker domain of a K+ channel is required for the control of channel gating via its first α-helix located just below the channel pore and for the proper folding of the channel. Shaker K+ channels form the major K+ conductance of the plasma membrane in plants. They are composed of four subunits arranged around a central ion-conducting pore. The intracellular carboxy-terminal region of each subunit contains several regulatory elements, including a C-linker region and a cyclic nucleotide-binding domain (CNBD). The C-linker is the first domain present downstream of the sixth transmembrane segment and connects the CNBD to the transmembrane core. With the aim of identifying the role of the C-linker in the Shaker channel properties, we performed subdomain swapping between the C-linker of two Arabidopsis (Arabidopsis thaliana) Shaker subunits, K+ channel in Arabidopsis thaliana2 (KAT2) and Arabidopsis thaliana K+ rectifying channel1 (AtKC1). These two subunits contribute to K+ transport in planta by forming heteromeric channels with other Shaker subunits. However, they display contrasting behavior when expressed in tobacco mesophyll protoplasts: KAT2 forms homotetrameric channels active at the plasma membrane, whereas AtKC1 is retained in the endoplasmic reticulum when expressed alone. The resulting chimeric/mutated constructs were analyzed for subcellular localization and functionally characterized. We identified two contiguous amino acids, valine-381 and serine-382, located in the C-linker carboxy-terminal end, which prevent KAT2 surface expression when mutated into the equivalent residues from AtKC1. Moreover, we demonstrated that the nine-amino acid stretch 312TVRAASEFA320 that composes the first C-linker α-helix located just below the pore is a crucial determinant of KAT2 channel activity. A KAT2 C-linker/CNBD three-dimensional model, based on animal HCN (for Hyperpolarization-activated, cyclic nucleotide-gated K+) channels as structure templates, has been built and used to discuss the role of the C-linker in plant Shaker inward channel structure and function.


The Plant Cell | 2017

Intracellular Distribution of Manganese by the Trans-Golgi Network Transporter NRAMP2 is Critical for Photosynthesis and Cellular Redox Homeostasis

Santiago Alejandro; Rémy Cailliatte; Carine Alcon; Léon Dirick; Frédéric Domergue; David Correia; Loren Castaings; Jean-François Briat; Stéphane Mari; Catherine Curie

The metal transporter NRAMP2 controls photosynthesis and antioxidant defenses by releasing manganese from the trans-Golgi network, thus building up a cytosolic pool that feeds downstream organelles. Plants require trace levels of manganese (Mn) for survival, as it is an essential cofactor in oxygen metabolism, especially O2 production via photosynthesis and the disposal of superoxide radicals. These processes occur in specialized organelles, requiring membrane-bound intracellular transporters to partition Mn between cell compartments. We identified an Arabidopsis thaliana member of the NRAMP family of divalent metal transporters, NRAMP2, which functions in the intracellular distribution of Mn. Two knockdown alleles of NRAMP2 showed decreased activity of photosystem II and increased oxidative stress under Mn-deficient conditions, yet total Mn content remained unchanged. At the subcellular level, these phenotypes were associated with a loss of Mn content in vacuoles and chloroplasts. NRAMP2 was able to rescue the mitochondrial yeast mutant mtm1∆. In plants, NRAMP2 is a resident protein of the trans-Golgi network. NRAMP2 may act indirectly on downstream organelles by building up a cytosolic pool that is used to feed target compartments. Moreover, not only does the nramp2 mutant accumulate superoxide ions, but NRAMP2 can functionally replace cytosolic superoxide dismutase in yeast, indicating that the pool of Mn displaced by NRAMP2 is required for the detoxification of reactive oxygen species.

Collaboration


Dive into the Carine Alcon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabelle Chérel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Geoffrey Duby

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Lebaudy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge