Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carine Cristiane Drewes is active.

Publication


Featured researches published by Carine Cristiane Drewes.


Journal of Immunology | 2013

Anti-Inflammatory Mechanisms of the Annexin A1 Protein and Its Mimetic Peptide Ac2-26 in Models of Ocular Inflammation In Vivo and In Vitro

Ana Paula Girol; Kallyne Kioko Oliveira Mimura; Carine Cristiane Drewes; Simone Marques Bolonheis; Egle Solito; Sandra Helena Poliselli Farsky; Cristiane Damas Gil; Sonia Maria Oliani

Annexin A1 (AnxA1) is a protein that displays potent anti-inflammatory properties, but its expression in eye tissue and its role in ocular inflammatory diseases have not been well studied. We investigated the mechanism of action and potential uses of AnxA1 and its mimetic peptide (Ac2-26) in the endotoxin-induced uveitis (EIU) rodent model and in human ARPE-19 cells activated by LPS. In rats, analysis of untreated EIU after 24 and 48 h or EIU treated with topical applications or with a single s.c. injection of Ac2-26 revealed the anti-inflammatory actions of Ac2-26 on leukocyte infiltration and on the release of inflammatory mediators; the systemic administration of Boc2, a formylated peptide receptor (fpr) antagonist, abrogated the peptide’s protective effects. Moreover, AnxA1−/− mice exhibited exacerbated EIU compared with wild-type animals. Immunohistochemical studies of ocular tissue showed a specific AnxA1 posttranslational modification in EIU and indicated that the fpr2 receptor mediated the anti-inflammatory actions of AnxA1. In vitro studies confirmed the roles of AnxA1 and fpr2 and the protective effects of Ac2-26 on the release of chemical mediators in ARPE-19 cells. Molecular analysis of NF-κB translocation and IL-6, IL-8, and cyclooxygenase-2 gene expression indicated that the protective effects of AnxA1 occur independently of the NF-κB signaling pathway and possibly in a posttranscriptional manner. Together, our data highlight the role of AnxA1 in ocular inflammation, especially uveitis, and suggest the use of AnxA1 or its mimetic peptide Ac2-26 as a therapeutic approach.


Pharmacology, Biochemistry and Behavior | 2011

Contribution of peripheral vanilloid receptor to the nociception induced by injection of spermine in mice.

Camila de Campos Velho Gewehr; Mariane Arnoldi Silva; Gabriela Trevisan dos Santos; Mateus Rossato; Sara Marchesan Oliveira; Carine Cristiane Drewes; Andréia Martini Pazini; Gustavo Petri Guerra; Maribel Antonello Rubin; Juliano Ferreira

Polyamines (putrescine, spermidine and spermine) are important endogenous regulators of ion channels, such as vanilloid (TRPV1), glutamatergic (NMDA or AMPA/kainate) and acid-sensitive (ASIC) receptors. In the present study, we have investigated the possible nociceptive effect induced by polyamines and the mechanisms involved in this nociception in vivo. The subcutaneous (s.c.) injection of capsaicin (as positive control), spermine, spermidine or putrescine produced nociception with ED(50) of 0.16 (0.07-0.39)nmol/paw, 0.4 (0.2-0.7) μmol/paw, 0.3 (0.1-0.9) μmol/paw and 3.2 (0.9-11.5) μmol/paw, respectively. The antagonists of NMDA (MK801, 1 nmol/paw), AMPA/kainate (DNQX, 1 nmol/paw) or ASIC receptors (amiloride, 100 nmol/paw) failed to reduce the spermine-trigged nociception. However, the TRPV1 antagonists capsazepine or SB366791 (1 nmol/paw) reduced spermine-induced nociception, with inhibition of 81 ± 10 and 68 ± 9%, respectively. The previous desensitization with resiniferatoxin (RTX) largely reduced the spermine-induced nociception and TRPV1 expression in the sciatic nerve, with reductions of 82 ± 9% and 67 ± 11%, respectively. Furthermore, the combination of spermine (100 nmol/paw) and RTX (0.005 fmol/paw), in doses which alone were not capable of inducing nociception, produced nociceptive behaviors. Moreover, different concentrations of spermine (3-300 μM) enhanced the specific binding of [(3)H]-RTX to TRPV1 receptor. Altogether, polyamines produce spontaneous nociceptive effect through the stimulation of TRPV1, but not of ionotropic glutamate or ASIC receptors.


Toxicology Letters | 2015

Formaldehyde inhalation during pregnancy abolishes the development of acute innate inflammation in offspring

Beatriz Silva Ibrahim; Cristiane Miranda da Silva; Éric Diego Barioni; Matheus Correa-Costa; Carine Cristiane Drewes; Niels Olsen Saraiva Câmara; Wothan Tavares-de-Lima; Sandra Helena Poliselli Farsky; Adriana Lino-dos-Santos-Franco

Formaldehyde (FA) is an environmental and occupational pollutant that induces programming mechanisms on the acquired immune host defense in offspring when exposed during the prenatal period. Hence, here we investigated whether the exposure of FA on pregnant rats could affect the development of an innate acute lung injury in offspring induced by lipopolissacaride (LPS) injection. Pregnant Wistar rats were exposed to FA (0.92 mg/m(3)) or vehicle (distillated water), both 1 h/day, 5 days/week, from 1 to 21 days of pregnancy. Non-manipulated rats were used as control. After 30 days of birth, the offspring was submitted to injection of LPS (Salmonella abortus equi, 5 mg/kg, i.p.). Systemic and lung inflammatory parameters were evaluated 24 h later. Exposure to FA during gestation abolished the development of acute lung injury in offspring, as observed by reduced number of leukocytes in the bronchoalveolar fluid (BAL), in the blood and in the bone marrow, and decreased myeloperoxidase activity in the lung. Moreover, phagocytes from BAL presented normal phagocytosis, but reduced oxidative burst. Alterations on the profile of inflammatory cytokines were evidenced by reduced mRNA levels of IL-6 and elevated levels of IL-10 and IFN gamma in the lung tissue. Indeed, mRNA levels of toll-likereceptor-4 and nuclear factor-kappa B translocation into the nucleus were also reduced. Additionally, hyperresponsiveness to methacholine was blunted in the trachea of offspring of FA exposed mothers. Together, our data clearly show that FA exposure in the prenatal period modifies the programming mechanisms of the innate defense in the offspring leading to impaired defense against infections.


International Journal of Nanomedicine | 2016

Novel therapeutic mechanisms determine the effectiveness of lipid-core nanocapsules on melanoma models

Carine Cristiane Drewes; Luana Almeida Fiel; Celina Goulart Bexiga; Ana Carolina Cavazzin Asbahr; Mayara Klimuk Uchiyama; Bruno Cogliati; Koiti Araki; Silvia Stanisçuaski Guterres; Adriana Raffin Pohlmann; Sandra Helena Poliselli Farsky

Melanoma is a severe metastatic skin cancer with poor prognosis and no effective treatment. Therefore, novel therapeutic approaches using nanotechnology have been proposed to improve therapeutic effectiveness. Lipid-core nanocapsules (LNCs), prepared with poly(ε-caprolactone), capric/caprylic triglyceride, and sorbitan monostearate and stabilized by polysorbate 80, are efficient as drug delivery systems. Here, we investigated the effects of acetyleugenol-loaded LNC (AcE-LNC) on human SK-Mel-28 melanoma cells and its therapeutic efficacies on melanoma induced by B16F10 in C57B6 mice. LNC and AcE-LNC had z-average diameters and zeta potential close to 210 nm and -10.0 mV, respectively. CytoViva® microscopy images showed that LNC and AcE-LNC penetrated into SK-Mel-28 cells, and remained in the cytoplasm. AcE-LNC in vitro treatment (18–90×109 particles/mL; 1 hour) induced late apoptosis and necrosis; LNC and AcE-LNC (3–18×109 particles/mL; 48 hours) treatments reduced cell proliferation and delayed the cell cycle. Elevated levels of nitric oxide were found in supernatant of LNC and AcE-LNC, which were not dependent on nitric oxide synthase expressions. Daily intraperitoneal or oral treatment (days 3–10 after tumor injection) with LNC or AcE-LNC (1×1012 particles/day), but not with AcE (50 mg/kg/day, same dose as AcE-LNC), reduced the volume of the tumor; nevertheless, intraperitoneal treatment caused toxicity. Oral LNC treatment was more efficient than AcE-LNC treatment. Moreover, oral treatment with nonencapsulated capric/caprylic triglyceride did not inhibit tumor development, implying that nanocapsule supramolecular structure is important to the therapeutic effects. Together, data herein presented highlight the relevance of the supramolecular structure of LNCs to toxicity on SK-Mel-28 cells and to the therapeutic efficacy on melanoma development in mice, conferring novel therapeutic mechanisms to LNC further than a drug delivery system.


Scientific Reports | 2016

Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans.

Rodrigo Azevedo Loiola; Fabyana Maria dos Anjos; Ana Lúcia Borges Shimada; Wesley Soares Cruz; Carine Cristiane Drewes; Stephen Fernandes de Paula Rodrigues; Karina Helena Morais Cardozo; Valdemir Melechco Carvalho; Ernani Pinto; Sandra Helena Poliselli Farsky

It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.


Scientific Reports | 2015

Absorption of PCB126 by upper airways impairs G protein-coupled receptor-mediated immune response.

Ana Lúcia Borges Shimada; Wesley Soares Cruz; Rodrigo Azevedo Loiola; Carine Cristiane Drewes; Fabiane Dörr; Natália G. Figueiredo; Ernani Pinto; Sandra Helena Poliselli Farsky

PCB126 is a dioxin-like polychlorinated biphenyl (PCB) environmental pollutant with a significant impact on human health, as it bioaccumulates and causes severe toxicity. PCB126-induced immune toxicity has been described, although the mechanisms have not been fully elucidated. In this study, an in vivo protocol of PCB126 intoxication into male Wistar rats by intranasal route was used, which has not yet been described. The intoxication was characterised by PCB126 accumulation in the lungs and liver, and enhanced aryl hydrocarbon receptor expression in the liver, lungs, kidneys, and adipose tissues. Moreover, an innate immune deficiency was characterised by impairment of adhesion receptors on blood leukocytes and by reduced blood neutrophil locomotion and oxidative burst activation elicited by ex vivo G protein-coupled receptor (GPCR) activation. Specificity of PCB126 actions on the GPCR pathway was shown by normal burst oxidative activation evoked by Toll-like receptor 4 and protein kinase C direct activation. Moreover, in vivo PCB180 intoxication did not alter adhesion receptors on blood leukocytes either blood neutrophil locomotion, and only partially reduced the GPCR-induced burst oxidative activation on neutrophils. Therefore, a novel mechanism of in vivo PCB126 toxicity is described which impairs a pivotal inflammatory pathway to the host defence against infections.


Toxicology and Applied Pharmacology | 2016

Beneficial effects of vitamin C treatment on pregnant rats exposed to formaldehyde: Reversal of immunosuppression in the offspring

Beatriz Silva Ibrahim; Éric Diego Barioni; Cíntia Scucuglia Heluany; Tarcio Teodoro Braga; Carine Cristiane Drewes; Silvia Goes Costa; Niels Olsen Saraiva Câmara; Sandra Helena Poliselli Farsky; Adriana Lino-dos-Santos-Franco

Inhalation of formaldehyde (FA) during the pregnancy induces oxidative stress in the uterus, and here we hypothesized that this mechanism may be responsible for the impaired immune response detected in the offspring. In order to investigate the protective effects of Vitamin C on the oxidative stress induced by FA in the uterine microenvironment, pregnant Wistar rats were treated with vitamin C (150mg/kg, gavage) or vehicle (distilled water, gavage) 1h before FA exposure (0.92mg/m(3), 1h/day, 5days/week), for 21days, and the 30days old offspring were submitted to LPS injection (Salmonella abortus equi, 5mg/kg, i.p.). The enhanced gene expression of iNOS, COX-1 and COX-2 and decreased gene expression of SOD-2 in the uterus of FA exposed mothers was rescued by Vit C treatment. Moreover, vitamin C rescued the impaired immune response elicited by LPS in the offspring from FA exposed mothers, by increasing the number of blood and bone marrow leukocytes, and augmenting gene expression of IL-6 and reducing mRNA levels of IL-10 and IFN in the lungs. Vitamin C treatment did not rescue the impaired TLR4-NF-kB pathway in the lung of the offspring, suggesting that FA-induced uterine oxidative stress affects other inflammatory pathways activated by LPS in the offspring. Together, data obtained here confirm our hypothesis that FA-induced oxidative stress in the uterine microenvironment modifies the programming mechanisms of the immune defenses of offspring, leading to an impaired host defense.


American Journal of Physiology-endocrinology and Metabolism | 2014

Alterations in the profile of blood neutrophil membrane receptors caused by in vivo adrenocorticotrophic hormone actions

Isabel Daufenback Machado; José Roberto Santin; Carine Cristiane Drewes; Cristiane Damas Gil; Sonia Maria Oliani; Mauro Perretti; Sandra Helena Poliselli Farsky

Elevated levels of adrenocorticotrophic hormone (ACTH) mobilize granulocytes from bone marrow into the blood, although these neutrophils are refractory to a full migratory response into inflamed tissues. Here, we investigated the dependence of glucocorticoid receptor activation and glucocorticoid-regulated protein annexin A1 (ANXA1) on ACTH-induced neutrophilia and the phenotype of blood neutrophil after ACTH injection, focusing on adhesion molecule expressions and locomotion properties. ACTH injection (5 μg ip, 4 h) induced neutrophilia in wild-type (WT) mice and did not alter the elevated numbers of neutrophils in RU-38486 (RU)-pretreated or ANXA1(-/-) mice injected with ACTH. Neutrophils from WT ACTH-treated mice presented higher expression of Ly6G⁺ANXA1(high), CD18(high), CD62L(high), CD49(high), CXCR4(high), and formyl-peptide receptor 1 (FPR1(low)) than those observed in RU-pretreated or ANXA1(-/-) mice. The membrane phenotype of neutrophils collected from WT ACTH-treated mice was paralleled by elevated fractions of rolling and adherent leukocytes to the cremaster postcapillary venules together with impaired neutrophil migration into inflamed air pouches in vivo and in vitro reduced formyl-methionyl-leucyl-phenylalanine (fMLP) or stromal-derived factor-1 (SDF-1α)-induced chemotaxis. In an 18-h senescence protocol, neutrophils from WT ACTH-treated mice had a higher proportion of ANXAV(low)/CXCR4(low), and they were less phagocytosed by peritoneal macrophages. We conclude that alterations on HPA axis affect the pattern of membrane receptors in circulating neutrophils, which may lead to different neutrophil phenotypes in the blood. Moreover, ACTH actions render circulating neutrophils to a phenotype with early reactivity, such as in vivo leukocyte-endothelial interactions, but with impaired locomotion and clearance.


Bioorganic & Medicinal Chemistry | 2013

Synthesis and preliminary biological evaluation of a compound library of triazolylcyclitols

Gonzalo Carrau; Carine Cristiane Drewes; Ana Lúcia Borges Shimada; Ana Bertucci; Sandra Helena Poliselli Farsky; Hélio A. Stefani; David Gonzalez

A small library of compounds was prepared by a combination of toluene dioxygenase (TDO)-catalyzed enzymatic dihydroxylation and copper(I)-catalyzed Hüisgen cycloaddition. Some compounds were obtained by coupling an alkyne and a conduritol derivative, while more complex structures were obtained by a double Hüisgen reaction of a dialkyne and two molecules of the cyclitol. The compounds were fully characterized and subjected to preliminary biological screening.


International Journal of Nanomedicine | 2017

Role of poly(ε-caprolactone) lipid-core nanocapsules on melanoma–neutrophil crosstalk

Carine Cristiane Drewes; Aline de C S Alves; Cristina Bichels Hebeda; Isabela Copetti; Silvana Sandri; Mayara Klimuk Uchiyama; Koiti Araki; Silvia Stanisçuaski Guterres; Adriana Raffin Pohlmann; Sandra Helena Poliselli Farsky

Metastatic melanoma is an aggressive cancer with increasing incidence and limited therapies in advanced stages. Systemic neutrophilia or abundant neutrophils in the tumor contribute toward its worst prognosis, and the interplay of cancer and the immune system has been shown in tumor development and metastasis. We recently showed the in vivo efficacy of poly(ε-caprolactone) lipid-core nanocapsule (LNC) or LNC loaded with acetyleugenol (AcE-LNC) to treat B16F10-induced melanoma in mice. In this study, we investigated whether LNC or AcE-LNC toxicity could involve modifications on crosstalk of melanoma cells and neutrophils. Therefore, melanoma cells (B16F10) were pretreated with vehicle, LNC, AcE or AcE-LNC for 24 h, washed and, further, cocultured for 18 h with peritoneal neutrophils obtained from C57Bl/6 mice. Melanoma cells were able to internalize the LNC or AcE-LNC after 2 h of incubation. LNC or AcE-LNC pretreatments did not cause melanoma cells death, but led melanoma cells to be more susceptible to death in serum deprivation or hypoxia or in the presence of neutrophils. Interestingly, the production of reactive oxygen species (ROS), which causes cell death, was increased by neutrophils in the presence of LNC- and AcE-LNC-pretreated melanoma cells. LNC or AcE-LNC treatments reduced the concentration of transforming growth factor-β (TGF-β) in the supernatant of melanoma cells, a known factor secreted by cancer cells to induce pro-tumoral actions of neutrophils in the tumor microenvironment. In addition, we found reduced levels of pro-tumoral chemical mediators VEGF, arginase-1, interleukin-10 (IL-10) and matrix metalloproteinase-9 (MMP-9) in the supernatant of LNC or AcE-LNC-pretreated melanoma cells and cocultured with neutrophils. Overall, our data show that the uptake of LNC or AcE-LNC by melanoma cells affects intracellular mechanisms leading to more susceptibility to death and also signals higher neutrophil antitumoral activity.

Collaboration


Dive into the Carine Cristiane Drewes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana Raffin Pohlmann

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristiane Damas Gil

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koiti Araki

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge