Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carine Fillebeen is active.

Publication


Featured researches published by Carine Fillebeen.


Molecular and Cellular Biology | 2007

Iron-Dependent Degradation of Apo-IRP1 by the Ubiquitin-Proteasome Pathway

Jian Wang; Carine Fillebeen; Guohua Chen; Annette Biederbick; Roland Lill; Kostas Pantopoulos

ABSTRACT Iron regulatory protein 1 (IRP1) controls the translation or stability of several mRNAs by binding to “iron-responsive elements” within their untranslated regions. In iron-replete cells, IRP1 assembles a cubane iron-sulfur cluster (ISC) that inhibits RNA-binding activity and converts the protein to cytosolic aconitase. We show that the constitutive IRP1C437S mutant, which fails to form an ISC, is destabilized by iron. Thus, exposure of H1299 cells to ferric ammonium citrate reduced the half-life of transfected IRP1C437S from ∼24 h to ∼10 h. The iron-dependent degradation of IRP1C437S involved ubiquitination, required ongoing transcription and translation, and could be efficiently blocked by the proteasomal inhibitors MG132 and lactacystin. Similar results were obtained with overexpressed wild-type IRP1, which predominated in the apo-form even in iron-loaded H1299 cells, possibly due to saturation of the ISC assembly machinery. Importantly, inhibition of ISC biogenesis in HeLa cells by small interfering RNA knockdown of the cysteine desulfurase Nfs1 sensitized endogenous IRP1 for iron-dependent degradation. Collectively, these data uncover a mechanism for the regulation of IRP1 abundance as a means to control its RNA-binding activity, when the ISC assembly pathway is impaired.


Molecular and Cellular Biology | 2003

A Phosphomimetic Mutation at Ser-138 Renders Iron Regulatory Protein 1 Sensitive to Iron-Dependent Degradation

Carine Fillebeen; Danielle Chahine; Annie Caltagirone; Phillip Segal; Kostas Pantopoulos

ABSTRACT Iron regulatory protein 1 (IRP1) binds to mRNA iron-responsive elements (IREs) and thereby controls the expression of IRE-containing mRNAs. In iron-replete cells, assembly of a cubane [4Fe-4S] cluster inhibits IRE-binding activity and converts IRP1 to a cytosolic aconitase. Earlier experiments with Saccharomyces cerevisiae suggested that phosphomimetic mutations of Ser-138 negatively affect the stability of the cluster (N. M. Brown, S. A. Anderson, D. W. Steffen, T. B. Carpenter, M. C. Kennedy, W. E. Walden, and R. S. Eisenstein, Proc. Natl. Acad. Sci. USA 95:15235-15240, 1998). Along these lines, we show here that a highly purified preparation of recombinant human IRP1 bearing a phosphomimetic S138E substitution (IRP1S138E) lacks aconitase activity, which is a hallmark of [4Fe-4S] cluster integrity. Similarly, IRP1S138E expressed in mammalian cells fails to function as aconitase. Furthermore, we demonstrate that the impairment of [4Fe-4S] cluster assembly in mammalian cells sensitizes IRP1S138E to iron-dependent degradation. This effect can be completely blocked by the iron chelator desferrioxamine or by the proteasome inhibitors MG132 and lactacystin. As expected, the stability of wild-type or phosphorylation-deficient IRP1S138A is not affected by iron manipulations. Ser-138 and flanking sequences appear to be highly conserved in the IRP1s of vertebrates, whereas insect IRP1 orthologues and nonvertebrate IRP1-like molecules contain an S138A substitution. Our data suggest that phosphorylation of Ser-138 may provide a basis for an additional mechanism for the control of vertebrate IRP1 activity at the level of protein stability.


Molecular and Cellular Biology | 2006

Sodium Nitroprusside Promotes IRP2 Degradation via an Increase in Intracellular Iron and in the Absence of S Nitrosylation at C178

Jian Wang; Carine Fillebeen; Guohua Chen; Bill Andriopoulos; Kostas Pantopoulos

ABSTRACT In iron-replete cells the posttranscriptional regulator IRP2 undergoes ubiquitination and proteasomal degradation. A similar response occurs in cells exposed to sodium nitroprusside (SNP), an NO-releasing drug. It has been proposed that nitroprusside ([Fe(CN)5NO]2−) fails to donate iron into cells and that it promotes IRP2 degradation via S nitrosylation at C178. This residue is located within a stretch of 73 amino acids, earlier proposed to define an iron-dependent degradation domain. Surprisingly, we show that IRP2 bearing a C178S mutation or a Δ73 deletion is sensitive to degradation not only by ferric ammonium citrate (FAC) but also by SNP. Moreover, FAC and SNP attenuate the RNA-binding activities of IRP2 and its homologue IRP1 with similar kinetics. Actinomycin D, cycloheximide, succinylacetone, and dimethyl-oxalylglycine antagonize IRP2 degradation in response to both FAC and SNP, suggesting a common mechanistic basis. IRP2 is not only sensitive to fresh, but also to photodegraded SNP and remains unaffected by S-nitrosoglutathione (GSNO), an established nitrosation agent. Importantly, both fresh and photodegraded SNP, but not GSNO, promote a >4-fold increase in the calcein-accessible labile iron pool. Collectively, these results suggest that IRP2 degradation by SNP does not require S nitrosylation but rather represents a response to iron loading.


Journal of Trace Elements in Medicine and Biology | 2010

Iron absorption and distribution in TNFΔARE/+ mice, a model of chronic inflammation

Klaus Schümann; Nadia Herbach; Christina Kerling; Markus Seifert; Carine Fillebeen; Isabella Prysch; Jens G. Reich; Günter Weiss; Kostas Pantopoulos

Hemizygous TNF(DeltaARE/+) mice are a murine model for chronic inflammation. We utilized these animals to study iron-kinetics and corresponding protein expression in an iron-deficient and iron-adequate setting. (59)Fe-absorption was determined in ligated duodenal loops in vivo. Whole body distribution of i.v. injected (59)Fe was analysed, and the organ specific expression of ferroportin, transferrin receptor-1, hepcidin and duodenal DMT-1 was quantified by real-time PCR and Western blotting. Duodenal (59)Fe-lumen-to-body transport was not affected by the genotype. Duodenal (59)Fe-retention was increased in TNF(DeltaARE/+) mice, suggesting higher (59)Fe-losses with defoliated enterocytes. Iron-deficiency increased duodenal (59)Fe-lumen-to-body transport, and higher duodenal (59)Fe-tissue retention went along with higher duodenal DMT-1, ferroportin, and liver hepcidin expression. TNF(DeltaARE/+) mice significantly increase their (59)Fe-content in inflamed joints and ilea, and correspondingly reduce splenic (59)Fe-content. Leukocyte infiltrations in the joints suggest a substantial shift of iron-loaded RES cells to inflamed tissues as the underlying mechanism. This finding was paralleled by increased non-haem iron content in joints and reduced haemoglobin and haematocrit concentrations in TNF(DeltaARE/+) mice. In conclusion, erythropoiesis in inflamed TNF(DeltaARE/+) mice could be iron-limited due to losses with exfoliated iron-loaded enterocytes and/or to increased iron-retention in RES cells that shift from the spleen to inflamed tissues.


Journal of Molecular Medicine | 2015

Hfe and Hjv exhibit overlapping functions for iron signaling to hepcidin

Patricia Kent; Nicole Wilkinson; Marco Constante; Carine Fillebeen; Konstantinos Gkouvatsos; John Wagner; Marzell Buffler; Christiane Becker; Klaus Schümann; Manuela Santos; Kostas Pantopoulos

Functional inactivation of HFE or hemojuvelin (HJV) is causatively linked to adult or juvenile hereditary hemochromatosis, respectively. Systemic iron overload results from inadequate expression of hepcidin, the iron regulatory hormone. While HJV regulates hepcidin by amplifying bone morphogenetic protein (BMP) signaling, the role of HFE in the hepcidin pathway remains incompletely understood. We investigated the pathophysiological implications of combined Hfe and Hjv ablation in mice. Isogenic Hfe−/− and Hjv−/− mice were crossed to generate double Hfe−/−Hjv−/− progeny. Wild-type control and mutant mice of all genotypes were analyzed for serum, hepatic, and splenic iron content, expression of iron metabolism proteins, and expression of hepcidin and Smad signaling in the liver, in response to a standard or an iron-enriched diet. As expected, Hfe−/− and Hjv−/− mice developed relatively mild or severe iron overload, respectively, which corresponded to the degree of hepcidin inhibition. The double Hfe−/−Hjv−/− mice exhibited an indistinguishable phenotype to single Hjv−/− counterparts with regard to suppression of hepcidin, serum and hepatic iron overload, splenic iron deficiency, tissue iron metabolism, and Smad signaling, under both dietary regimens. We conclude that the hemochromatotic phenotype caused by disruption of Hjv is not further aggravated by combined Hfe/Hjv deficiency. Our results provide genetic evidence that Hfe and Hjv operate in the same pathway for the regulation of hepcidin expression and iron metabolism.Key messagesCombined disruption of Hfe and Hjv phenocopies single Hjv deficiency.Single Hjv−/− and double Hfe−/−Hjv−/− mice exhibit comparable iron overload.Hfe and Hjv regulate hepcidin via the same pathway.


Journal of Visualized Experiments | 2014

Electrophoretic mobility shift assay (EMSA) for the study of RNA-protein interactions: the IRE/IRP example.

Carine Fillebeen; Nicole Wilkinson; Kostas Pantopoulos

RNA/protein interactions are critical for post-transcriptional regulatory pathways. Among the best-characterized cytosolic RNA-binding proteins are iron regulatory proteins, IRP1 and IRP2. They bind to iron responsive elements (IREs) within the untranslated regions (UTRs) of several target mRNAs, thereby controlling the mRNAs translation or stability. IRE/IRP interactions have been widely studied by EMSA. Here, we describe the EMSA protocol for analyzing the IRE-binding activity of IRP1 and IRP2, which can be generalized to assess the activity of other RNA-binding proteins as well. A crude protein lysate containing an RNA-binding protein, or a purified preparation of this protein, is incubated with an excess of(32) P-labeled RNA probe, allowing for complex formation. Heparin is added to preclude non-specific protein to probe binding. Subsequently, the mixture is analyzed by non-denaturing electrophoresis on a polyacrylamide gel. The free probe migrates fast, while the RNA/protein complex exhibits retarded mobility; hence, the procedure is also called gel retardation or bandshift assay. After completion of the electrophoresis, the gel is dried and RNA/protein complexes, as well as free probe, are detected by autoradiography. The overall goal of the protocol is to detect and quantify IRE/IRP and other RNA/protein interactions. Moreover, EMSA can also be used to determine specificity, binding affinity, and stoichiometry of the RNA/protein interaction under investigation.


Blood | 2018

Inhibition of heme oxygenase ameliorates anemia and reduces iron overload in a β-thalassemia mouse model

Daniel Garcia-Santos; Amel Hamdi; Zuzana Saxova; Carine Fillebeen; Kostas Pantopoulos; Monika Horvathova; Prem Ponka

Thalassemias are a heterogeneous group of red blood cell disorders, considered a major cause of morbidity and mortality among genetic diseases. However, there is still no universally available cure for thalassemias. The underlying basis of thalassemia pathology is the premature apoptotic destruction of erythroblasts causing ineffective erythropoiesis. In β-thalassemia, β-globin synthesis is reduced causing α-globin accumulation. Unpaired globin chains, with heme attached to them, accumulate in thalassemic erythroblasts causing oxidative stress and the premature cell death. We hypothesize that in β-thalassemia heme oxygenase (HO) 1 could play a pathogenic role in the development of anemia and ineffective erythropoiesis. To test this hypothesis, we exploited a mouse model of β-thalassemia intermedia, Th3/+ We observed that HO inhibition using tin protoporphyrin IX (SnPP) decreased heme-iron recycling in the liver and ameliorated anemia in the Th3/+ mice. SnPP administration led to a decrease in erythropoietin and increase in hepcidin serum levels, changes that were accompanied by an alleviation of ineffective erythropoiesis in Th3/+ mice. Additionally, the bone marrow from Th3/+ mice treated with SnPP exhibited decreased heme catabolism and diminished iron release as well as reduced apoptosis. Our results indicate that the iron released from heme because of HO activity contributes to the pathophysiology of thalassemia. Therefore, new therapies that suppress heme catabolism may be beneficial in ameliorating the anemia and ineffective erythropoiesis in thalassemias.


bioRxiv | 2018

Mouse models of hereditary hemochromatosis do not develop early liver fibrosis in response to a high fat diet

Kostas Pantopoulos; John E. Wagner; Carine Fillebeen; Tina Haliotis; Jeannie Mui; Hojatollah Vali

Hepatic iron overload, a hallmark of hereditary hemochromatosis (HH), triggers progressive liver disease. There is also increasing evidence for a pathogenic role of iron in non-alcoholic fatty liver disease (NAFLD), which may progress to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis and hepatocellular cancer. Mouse models of HH and NAFLD can be used to explore potential interactions between iron and lipid metabolic pathways. Hfe−/− mice, a model of moderate iron overload, were reported to develop early liver fibrosis in response to a high fat diet. However, this was not the case with Hjv−/− mice, a model of severe iron overload. These data raised the possibility that the Hfe gene may protect against liver injury independently of its iron regulatory function. Herein, we addressed this hypothesis in a comparative study utilizing wild type, Hfe−/−, Hjv−/− and double Hfe−/−Hjv−/− mice. The animals, all in C57/BL6 background, were fed with a high fat diet for 14 weeks and developed hepatic steatosis, associated with mild iron overload. Hfe co-ablation did not sensitize steatotic Hjv-deficient mice to liver injury. Moreover, we did not observe any signs of liver inflammation or fibrosis even in single steatotic Hfe−/− mice. Ultrastructural studies revealed a reduced lipid and glycogen content in Hjv−/− hepatocytes, indicative of a metabolic defect. Interestingly, glycogen levels were restored in double Hfe−/−Hjv−/− mice, which is consistent with a metabolic function of Hfe. We conclude that hepatocellular iron excess does not aggravate diet-induced steatosis to steatohepatitis or early liver fibrosis in mouse models of HH, irrespectively of the presence or lack of Hfe.


Blood | 2018

Hepcidin-mediated hypoferremic response to acute inflammation requires a threshold of Bmp6/Hjv/Smad signaling

Carine Fillebeen; Nicole Wilkinson; Edouard Charlebois; Angeliki Katsarou; John E. Wagner; Kostas Pantopoulos

Systemic iron balance is controlled by hepcidin, a liver hormone that limits iron efflux to the bloodstream by promoting degradation of the iron exporter ferroportin in target cells. Iron-dependent hepcidin induction requires hemojuvelin (HJV), a bone morphogenetic protein (BMP) coreceptor that is disrupted in juvenile hemochromatosis, causing dramatic hepcidin deficiency and tissue iron overload. Hjv-/- mice recapitulate phenotypic hallmarks of hemochromatosis but exhibit blunted hepcidin induction following lipopolysaccharide (LPS) administration. We show that Hjv-/- mice fail to mount an appropriate hypoferremic response to acute inflammation caused by LPS, the lipopeptide FSL1, or Escherichia coli infection because residual hepcidin does not suffice to drastically decrease macrophage ferroportin levels. Hfe-/- mice, a model of milder hemochromatosis, exhibit almost wild-type inflammatory hepcidin expression and associated effects, whereas double Hjv-/-Hfe-/- mice phenocopy single Hjv-/- counterparts. In primary murine hepatocytes, Hjv deficiency does not affect interleukin-6 (IL-6)/Stat, and only slightly inhibits BMP2/Smad signaling to hepcidin; however, it severely impairs BMP6/Smad signaling and thereby abolishes synergism with the IL-6/Stat pathway. Inflammatory induction of hepcidin is suppressed in iron-deficient wild-type mice and recovers after the animals are provided overnight access to an iron-rich diet. We conclude that Hjv is required for inflammatory induction of hepcidin and controls the acute hypoferremic response by maintaining a threshold of Bmp6/Smad signaling. Our data highlight Hjv as a potential pharmacological target against anemia of inflammation.


Journal of Biological Chemistry | 2005

Iron Inactivates the RNA Polymerase NS5B and Suppresses Subgenomic Replication of Hepatitis C Virus

Carine Fillebeen; Ana Maria Rivas-Estilla; Martin Bisaillon; Prem Ponka; Martina U. Muckenthaler; Matthias W. Hentze; Antonis E. Koromilas; Kostas Pantopoulos

Collaboration


Dive into the Carine Fillebeen's collaboration.

Top Co-Authors

Avatar

Kostas Pantopoulos

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Kostas Pantopoulos

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge