Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carissa Embury-Hyatt is active.

Publication


Featured researches published by Carissa Embury-Hyatt.


Scientific Reports | 2012

Transmission of Ebola virus from pigs to non-human primates

Hana Weingartl; Carissa Embury-Hyatt; Charles Nfon; Anders Leung; Greg C. Smith; Gary P. Kobinger

Ebola viruses (EBOV) cause often fatal hemorrhagic fever in several species of simian primates including human. While fruit bats are considered natural reservoir, involvement of other species in EBOV transmission is unclear. In 2009, Reston-EBOV was the first EBOV detected in swine with indicated transmission to humans. In-contact transmission of Zaire-EBOV (ZEBOV) between pigs was demonstrated experimentally. Here we show ZEBOV transmission from pigs to cynomolgus macaques without direct contact. Interestingly, transmission between macaques in similar housing conditions was never observed. Piglets inoculated oro-nasally with ZEBOV were transferred to the room housing macaques in an open inaccessible cage system. All macaques became infected. Infectious virus was detected in oro-nasal swabs of piglets, and in blood, swabs, and tissues of macaques. This is the first report of experimental interspecies virus transmission, with the macaques also used as a human surrogate. Our finding may influence prevention and control measures during EBOV outbreaks.


Transboundary and Emerging Diseases | 2014

Investigation into the role of potentially contaminated feed as a source of the first-detected outbreaks of porcine epidemic diarrhea in Canada.

John Pasick; Yohannes Berhane; Davor Ojkic; G. Maxie; Carissa Embury-Hyatt; K. Swekla; Katherine Handel; Jim Fairles; Soren Alexandersen

Summary In January 2014, approximately 9 months following the initial detection of porcine epidemic diarrhea (PED) in the USA, the first case of PED was confirmed in a swine herd in south‐western Ontario. A follow‐up epidemiological investigation carried out on the initial and 10 subsequent Ontario PED cases pointed to feed as a common risk factor. As a result, several lots of feed and spray‐dried porcine plasma (SDPP) used as a feed supplement were tested for the presence of PEDV genome by real‐time RT‐PCR assay. Several of these tested positive, supporting the notion that contaminated feed may have been responsible for the introduction of PEDV into Canada. These findings led us to conduct a bioassay experiment in which three PEDV‐positive SDPP samples (from a single lot) and two PEDV‐positive feed samples supplemented with this SDPP were used to orally inoculate 3‐week‐old piglets. Although the feed‐inoculated piglets did not show any significant excretion of PEDV, the SDPP‐inoculated piglets shed PEDV at a relatively high level for ≥9 days. Despite the fact that the tested PEDV genome positive feed did not result in obvious piglet infection in our bioassay experiment, contaminated feed cannot be ruled out as a likely source of this introduction in the field where many other variables may play a contributing role.


Emerging Infectious Diseases | 2007

Susceptibility of Canada geese (Branta canadensis) to highly pathogenic avian influenza virus (H5N1).

John Pasick; Yohannes Berhane; Carissa Embury-Hyatt; John Copps; Helen Kehler; Katherine Handel; Shawn Babiuk; Kathleen Hooper-McGrevy; Yan Li; Quynh Mai Le; Song Lien Phuong

Prior exposure of Canada geese to a North American low pathogenic virus (H5N2) decreases their susceptibility to Eurasian highly pathogenic avian influenza virus (H5N1).


Transboundary and Emerging Diseases | 2008

Quantification of Lumpy Skin Disease Virus Following Experimental Infection in Cattle

Shawn Babiuk; Timothy R. Bowden; G. Parkyn; B. Dalman; L. Manning; James Neufeld; Carissa Embury-Hyatt; John Copps; David B. Boyle

Lumpy skin disease along with sheep pox and goatpox are the most serious poxvirus diseases of livestock, and are caused by viruses that belong to the genus Capripoxvirus within the subfamily Chordopoxvirinae, family Poxviridae. To facilitate the study of lumpy skin disease pathogenesis, we inoculated eight 4- to 6-month-old Holstein calves intravenously with lumpy skin disease virus (LSDV) and collected samples over a period of 42 days for analysis by virus isolation, real-time PCR and light microscopy. Following inoculation, cattle developed fever and skin nodules, with the extent of infection varying between animals. Skin nodules remained visible until the end of the experiment on day post-inoculation (DPI) 42. Viremia measured by real-time PCR and virus isolation was not observed in all animals but was detectable between 6 and 15 DPI. Low levels of viral shedding were observed in oral and nasal secretions between 12 and 18 DPI. Several tissues were assessed for the presence of virus at DPI 3, 6, 9, 12, 15, 18 and 42 by virus isolation and real-time PCR. Virus was consistently detected by real-time PCR and virus isolation at high levels in skin nodules indicating LSDV has a tropism for skin. In contrast, relatively few lesions were observed systemically. Viral DNA was detected by real-time PCR in skin lesions collected on DPI 42. Cattle developing anti-capripoxvirus antibodies starting at DPI 21 was detected by serum neutralization. The disease in this study varied from mild with few secondary skin nodules to generalized infection of varying severity, and was characterized by morbidity with no mortality.


Journal of Virology | 2009

Experimental Infection of Pigs with the Human 1918 Pandemic Influenza Virus

Hana Weingartl; Randy A. Albrecht; Kelly M. Lager; Shawn Babiuk; Peter Marszal; James Neufeld; Carissa Embury-Hyatt; Porntippa Lekcharoensuk; Terrence M. Tumpey; Adolfo García-Sastre; Jürgen A. Richt

ABSTRACT Swine influenza was first recognized as a disease entity during the 1918 “Spanish flu” pandemic. The aim of this work was to determine the virulence of a plasmid-derived human 1918 pandemic H1N1 influenza virus (reconstructed 1918, or 1918/rec, virus) in swine using a plasmid-derived A/swine/Iowa/15/1930 H1N1 virus (1930/rec virus), representing the first isolated influenza virus, as a reference. Four-week-old piglets were inoculated intratracheally with either the 1930/rec or the 1918/rec virus or intranasally with the 1918/rec virus. A transient increase in temperature and mild respiratory signs developed postinoculation in all virus-inoculated groups. In contrast to other mammalian hosts (mice, ferrets, and macaques) where infection with the 1918/rec virus was lethal, the pigs did not develop severe respiratory distress or become moribund. Virus titers in the lower respiratory tract as well as macro- and microscopic lesions at 3 and 5 days postinfection (dpi) were comparable between the 1930/rec and 1918/rec virus-inoculated animals. In contrast to the 1930/rec virus-infected animals, at 7 dpi prominent lung lesions were present in only the 1918/rec virus-infected animals, and all the piglets developed antibodies at 7 dpi. Presented data support the hypothesis that the 1918 pandemic influenza virus was able to infect and replicate in swine, causing a respiratory disease, and that the virus was likely introduced into the pig population during the 1918 pandemic, resulting in the current lineage of the classical H1N1 swine influenza viruses.


Journal of Virology | 2015

Ebola virus transmission in guinea pigs

Gary Wong; Xiangguo Qiu; Jason S. Richardson; Todd Cutts; Brad Collignon; Jason Gren; Jenna Aviles; Carissa Embury-Hyatt; Gary P. Kobinger

ABSTRACT Ebola virus (EBOV) transmission is currently poorly characterized and is thought to occur primarily by direct contact with infectious material; however transmission from swine to nonhuman primates via the respiratory tract has been documented. To establish an EBOV transmission model for performing studies with statistical significance, groups of six guinea pigs (gps) were challenged intranasally (i.n.) or intraperitoneally (i.p.) with 10,000 times the 50% lethal dose (LD50) of gp-adapted EBOV, and naive gps were then introduced as cage mates for contact exposure at 1 day postinfection (p.i.). The animals were monitored for survival and clinical signs of disease and quantitated for virus shedding postexposure. Changes in the duration of contact of naive gps with infected animals were evaluated for their impact on transmission efficiency. Transmission was more efficient from i.n.- than from i.p.-challenged gps, with 17% versus 83% of naive gps surviving exposure, respectively. Virus shedding was detected beginning at 3 days p.i. from both i.n.- and i.p.-challenged animals. Contact duration positively correlated with transmission efficiency, and the abrogation of direct contact between infected and naive animals through the erection of a steel mesh was effective at stopping virus spread, provided that infectious animal bedding was absent from the cages. Histopathological and immunohistochemical findings show that i.n.-infected gps display enhanced lung pathology and EBOV antigen in the trachea, which supports increased virus transmission from these animals. The results suggest that i.n.-challenged gps are more infectious to naive animals than their systemically infected counterparts and that transmission occurs through direct contact with infectious materials, including those transported through air movement over short distances. IMPORTANCE Ebola is generally thought to be spread between humans though infectious bodily fluids. However, a study has shown that Ebola can be spread from pigs to monkeys without direct contact. Further studies have been hampered, because an economical animal model for Ebola transmission is not available. To address this, we established a transmission model in guinea pigs and determined the mechanisms behind virus spread. The survival data, in addition to microscopic examination of lung and trachea sections, show that mucosal infection of guinea pigs is an efficient model for Ebola transmission. Virus spread is increased with longer contact times with an infected animal and is possible without direct contact between an infected and a naive host but can be stopped if infectious materials are absent. These results warrant consideration for the development of future strategies against Ebola transmission and for a better understanding of the parameters involved in virus spread.


Nature Communications | 2017

DNA vaccination protects mice against Zika virus-induced damage to the testes

Bryan D. Griffin; Kar Muthumani; Bryce M. Warner; Anna Majer; Mable Hagan; Jonathan Audet; Derek R. Stein; Charlene Ranadheera; Trina Racine; Marc-Antoine de La Vega; Jocelyne Piret; Stephanie Kucas; Kaylie N. Tran; Kathy L. Frost; Christine De Graff; Geoff Soule; Leanne Scharikow; Jennifer Scott; Gordon McTavish; Valerie Smid; Young K. Park; Joel N. Maslow; Niranjan Y. Sardesai; J. Joseph Kim; Xiaojian Yao; Alexander Bello; Robbin Lindsay; Guy Boivin; Stephanie A. Booth; Darwyn Kobasa

Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract.


PLOS ONE | 2014

Peste des Petits Ruminants Virus Tissue Tropism and Pathogenesis in Sheep and Goats following Experimental Infection

Thang Truong; Hani Boshra; Carissa Embury-Hyatt; Charles Nfon; Volker Gerdts; Suresh K. Tikoo; Lorne A. Babiuk; Pravesh Kara; Thireshni Chetty; Arshad Mather; David B. Wallace; Shawn Babiuk

Peste des petits ruminants (PPR) is a viral disease which primarily affects small ruminants, causing significant economic losses for the livestock industry in developing countries. It is endemic in Saharan and sub-Saharan Africa, the Middle East and the Indian sub-continent. The primary hosts for peste des petits ruminants virus (PPRV) are goats and sheep; however recent models studying the pathology, disease progression and viremia of PPRV have focused primarily on goat models. This study evaluates the tissue tropism and pathogenesis of PPR following experimental infection of sheep and goats using a quantitative time-course study. Upon infection with a virulent strain of PPRV, both sheep and goats developed clinical signs and lesions typical of PPR, although sheep displayed milder clinical disease compared to goats. Tissue tropism of PPRV was evaluated by real-time RT-PCR and immunohistochemistry. Lymph nodes, lymphoid tissue and digestive tract organs were the predominant sites of virus replication. The results presented in this study provide models for the comparative evaluation of PPRV pathogenesis and tissue tropism in both sheep and goats. These models are suitable for the establishment of experimental parameters necessary for the evaluation of vaccines, as well as further studies into PPRV-host interactions.


Virology | 2012

Virulence differences of closely related pandemic 2009 H1N1 isolates correlate with increased inflammatory responses in ferrets

Isabelle Meunier; Carissa Embury-Hyatt; Shane Stebner; Michael Gray; Nathalie Bastien; Yan Li; Francis A. Plummer; Gary P. Kobinger; Veronika von Messling

Several early pandemic H1N1 influenza isolates cause severe disease in different animals models, while most strains result in mild clinical signs similar to seasonal influenza. In this study, the pathogenesis of the virulent Mexican isolate A/Mexico/InDRE4487/2009 and a mild Canadian isolate A/Canada-AB/RV1532/2009 was compared in ferrets. These viruses differed at nine residues, none of which has been previously identified as virulence factor. The Mexican isolate caused more severe disease and higher mortality, and reached higher peak nasal wash titers. Both viruses grew similarly in the respiratory tract, but only the virulent virus was detected in the gut after day 3. During the acute phase, both strains caused similar lung pathology, however the Mexican isolate induced severe inflammation even after virus clearance. This virus was also associated with a rapid and sustained induction of inflammatory cytokines, indicating that early dysregulation of the host response contributes importantly to the disease outcome.


Transboundary and Emerging Diseases | 2008

Bacterial Infections in Pigs Experimentally Infected with Nipah Virus

Yohannes Berhane; Hana Weingartl; J. Lopez; James Neufeld; Stefanie Czub; Carissa Embury-Hyatt; M. Goolia; John Copps; Markus Czub

Nipah virus (NiV; Paramyxoviridae) caused fatal encephalitis in humans during an outbreak in Malaysia in 1998/1999 after transmission from infected pigs. Our previous study demonstrated that the respiratory, lymphatic and central nervous systems are targets for virus replication in experimentally infected pigs. To continue the studies on pathogenesis of NiV in swine, six piglets were inoculated oronasally with 2.5 x 10(5) PFU per animal. Four pigs developed mild clinical signs, one exudative epidermitis, and one neurologic signs due to suppurative meningoencephalitis, and was euthanized at 11 days post-inoculation (dpi). Neutralizing antibodies reached in surviving animals titers around 1280 at 16 dpi. Nasal and oro-pharyngeal shedding of the NiV was detected between 2 and 17 dpi. Virus appeared to be cleared from the tissues of the infected animals by 23 dpi, with low amount of RNA detected in submandibular and bronchial lymph nodes of three pigs, and olfactory bulb of one animal. Despite the presence of neutralizing antibodies, virus was isolated from serum at 24 dpi, and the viral RNA was still detected in serum at 29 dpi. Our results indicate slower clearance of NiV from some of the infected pigs. Bacteria were detected in the cerebrospinal fluid of five NiV inoculated animals, with isolation of Streptococcus suis and Enterococcus faecalis. Staphylococcus hyicus was isolated from the skin lesions of the animal with exudative epidermitis. Along with the observed lymphoid depletion in the lymph nodes of all NiV-infected animals, and the demonstrated ability of NiV to infect porcine peripheral blood mononuclear cells in vitro, this finding warrants further investigation into a possible NiV-induced immunosuppression of the swine host.

Collaboration


Dive into the Carissa Embury-Hyatt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yohannes Berhane

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

Darwyn Kobasa

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Pasick

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

Charles Nfon

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

Anders Leung

Public Health Agency of Canada

View shared research outputs
Top Co-Authors

Avatar

Hana Weingartl

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

John Copps

Canadian Food Inspection Agency

View shared research outputs
Top Co-Authors

Avatar

Xiangguo Qiu

Public Health Agency of Canada

View shared research outputs
Researchain Logo
Decentralizing Knowledge