Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl A. Mears is active.

Publication


Featured researches published by Carl A. Mears.


Science | 2007

How Much More Rain Will Global Warming Bring

Frank J. Wentz; Lucrezia Ricciardulli; Kyle A. Hilburn; Carl A. Mears

Climate models and satellite observations both indicate that the total amount of water in the atmosphere will increase at a rate of 7% per kelvin of surface warming. However, the climate models predict that global precipitation will increase at a much slower rate of 1 to 3% per kelvin. A recent analysis of satellite observations does not support this prediction of a muted response of precipitation to global warming. Rather, the observations suggest that precipitation and total atmospheric water have increased at about the same rate over the past two decades.


Journal of Climate | 2003

A Reanalysis of the MSU Channel 2 Tropospheric Temperature Record

Carl A. Mears; Matthias C. Schabel; Frank J. Wentz

Abstract Over the period from 1979 to 2001, tropospheric trends derived from a widely cited analysis of the Microwave Sounding Unit (MSU) temperature record show little or no warming, while surface temperature trends based on in situ observations show a pronounced warming of ∼0.2 K decade−1. This discrepancy between trends at the surface and in the upper atmosphere has been a source of significant debate. Model predictions of amplification of warming with height in the troposphere are clearly inconsistent with the available observations, leading some researchers to question the adequacy of their representation of the water vapor greenhouse feedback. A reanalysis of the MSU channel 2 dataset, with the objective of providing a second independent source of these data, is described in this paper. Results presented herein show a global trend of 0.097 ± 0.020 K decade−1, generally agreeing with the work of Prabhakara et al. but in disagreement with the MSU analysis of Christy and Spencer, which shows significan...


Journal of Geophysical Research | 2009

An update of observed stratospheric temperature trends

William J. Randel; Keith P. Shine; John Austin; John J. Barnett; Chantal Claud; Nathan P. Gillett; Philippe Keckhut; Ulrike Langematz; Roger Lin; Craig S. Long; Carl A. Mears; Alvin J. Miller; John Nash; Dian J. Seidel; David W. J. Thompson; Fei Wu; Shigeo Yoden

An updated analysis of observed stratospheric temperature variability and trends is presented on the basis of satellite, radiosonde, and lidar observations. Satellite data include measurements from the series of NOAA operational instruments, including the Microwave Sounding Unit covering 1979–2007 and the Stratospheric Sounding Unit (SSU) covering 1979–2005. Radiosonde results are compared for six different data sets, incorporating a variety of homogeneity adjustments to account for changes in instrumentation and observational practices. Temperature changes in the lower stratosphere show cooling of ∼0.5 K/decade over much of the globe for 1979–2007, with some differences in detail among the different radiosonde and satellite data sets. Substantially larger cooling trends are observed in the Antarctic lower stratosphere during spring and summer, in association with development of the Antarctic ozone hole. Trends in the lower stratosphere derived from radiosonde data are also analyzed for a longer record (back to 1958); trends for the presatellite era (1958–1978) have a large range among the different homogenized data sets, implying large trend uncertainties. Trends in the middle and upper stratosphere have been derived from updated SSU data, taking into account changes in the SSU weighting functions due to observed atmospheric CO2 increases. The results show mean cooling of 0.5–1.5 K/decade during 1979–2005, with the greatest cooling in the upper stratosphere near 40–50 km. Temperature anomalies throughout the stratosphere were relatively constant during the decade 1995–2005. Long records of lidar temperature measurements at a few locations show reasonable agreement with SSU trends, although sampling uncertainties are large in the localized lidar measurements. Updated estimates of the solar cycle influence on stratospheric temperatures show a statistically significant signal in the tropics (∼30°N–S), with an amplitude (solar maximum minus solar minimum) of ∼0.5 K (lower stratosphere) to ∼1.0 K (upper stratosphere).


Proceedings of the National Academy of Sciences of the United States of America | 2007

Identification of human-induced changes in atmospheric moisture content

Benjamin D. Santer; Carl A. Mears; Frank J. Wentz; Karl E. Taylor; Peter J. Gleckler; T. M. L. Wigley; Tim P. Barnett; James S. Boyle; Wolfgang Brüggemann; Nathan P. Gillett; Stephen A. Klein; Gerald A. Meehl; Toru Nozawa; David W. Pierce; Peter A. Stott; Warren M. Washington; Michael F. Wehner

Data from the satellite-based Special Sensor Microwave Imager (SSM/I) show that the total atmospheric moisture content over oceans has increased by 0.41 kg/m2 per decade since 1988. Results from current climate models indicate that water vapor increases of this magnitude cannot be explained by climate noise alone. In a formal detection and attribution analysis using the pooled results from 22 different climate models, the simulated “fingerprint” pattern of anthropogenically caused changes in water vapor is identifiable with high statistical confidence in the SSM/I data. Experiments in which forcing factors are varied individually suggest that this fingerprint “match” is primarily due to human-caused increases in greenhouse gases and not to solar forcing or recovery from the eruption of Mount Pinatubo. Our findings provide preliminary evidence of an emerging anthropogenic signal in the moisture content of earths atmosphere.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Incorporating model quality information in climate change detection and attribution studies

B. D. Santer; Karl E. Taylor; Peter J. Gleckler; Céline Bonfils; Tim P. Barnett; David W. Pierce; T. M. L. Wigley; Carl A. Mears; Frank J. Wentz; Wolfgang Brüggemann; N. P. Gillett; Stephen A. Klein; Susan Solomon; Peter A. Stott; Michael F. Wehner

In a recent multimodel detection and attribution (D&A) study using the pooled results from 22 different climate models, the simulated “fingerprint” pattern of anthropogenically caused changes in water vapor was identifiable with high statistical confidence in satellite data. Each model received equal weight in the D&A analysis, despite large differences in the skill with which they simulate key aspects of observed climate. Here, we examine whether water vapor D&A results are sensitive to model quality. The “top 10” and “bottom 10” models are selected with three different sets of skill measures and two different ranking approaches. The entire D&A analysis is then repeated with each of these different sets of more or less skillful models. Our performance metrics include the ability to simulate the mean state, the annual cycle, and the variability associated with El Niño. We find that estimates of an anthropogenic water vapor fingerprint are insensitive to current model uncertainties, and are governed by basic physical processes that are well-represented in climate models. Because the fingerprint is both robust to current model uncertainties and dissimilar to the dominant noise patterns, our ability to identify an anthropogenic influence on observed multidecadal changes in water vapor is not affected by “screening” based on model quality.


Journal of Atmospheric and Oceanic Technology | 2009

Construction of the Remote Sensing Systems V3.2 Atmospheric Temperature Records from the MSU and AMSU Microwave Sounders

Carl A. Mears; Frank J. Wentz

Abstract Measurements made by microwave sounding instruments provide a multidecadal record of atmospheric temperature change. Measurements began in late 1978 with the launch of the first Microwave Sounding Unit (MSU) and continue to the present. In 1998, the first of the follow-on series of instruments—the Advanced Microwave Sounding Units (AMSUs)—was launched. To continue the atmospheric temperature record past 2004, when measurements from the last MSU instrument degraded in quality, AMSU and MSU measurements must be intercalibrated and combined to extend the atmospheric temperature data records. Calibration methods are described for three MSU–AMSU channels that measure the temperature of thick layers of the atmosphere centered in the middle troposphere, near the tropopause, and in the lower stratosphere. Some features of the resulting datasets are briefly summarized.


Bulletin of the American Meteorological Society | 2005

UNCERTAINTIES IN CLIMATE TRENDS Lessons from Upper-Air Temperature Records

Peter W. Thorne; D. E. Parker; John R. Christy; Carl A. Mears

Historically, meteorological observations have been made for operational forecasting rather than long-term monitoring purposes, so that there have been numerous changes in instrumentation and procedures. Hence to create climate quality datasets requires the identification, estimation, and removal of many nonclimatic biases from the historical data. Construction of a number of new tropospheric temperature climate datasets has highlighted previously unrecognized uncertainty in multidecadal temperature trends aloft. The choice of dataset can even change the sign of upper-air trends relative to those reported at the surface. So structural uncertainty introduced unintentionally through dataset construction choices is important and needs to be understood and mitigated. A number of ways that this could be addressed for historical records are discussed, as is the question of How it needs to be reduced through future coordinated observing systems with long-term monitoring as a driver, enabling explicit calculation...


Journal of Geophysical Research | 2001

Comparison of Special Sensor Microwave Imager and buoy-measured wind speeds from 1987 to 1997

Carl A. Mears; Deborah K. Smith; Frank J. Wentz

We compare wind speeds derived from microwave radiometer measurements made by the Special Sensor Microwave Imager (SSM/I) series of satellite instruments to those directly measured by buoy-mounted anemometers. The mean difference between SSM/I and buoy winds is typically , 0.4 ms 21 when averaged over all operational Tropical Atmosphere-Ocean and National Data Buoy Center buoys for a given year, and the standard deviation is , 1.4 ms 21 . Mean errors for a given satellite-buoy pair typically range from 2 1t o1 1ms 21 , with standard deviations , 1.4 ms 21 . Two methods of converting buoy-measured wind speed to a standard value measured at a height of 10 m are compared. We find that the principal difference between a simple logarithmic correction and a more detailed conversion to 10 m equivalent neutral stability wind speed is a shift of wind speed by about 0.12 m s 21 with no change in the distribution of SSM/I- buoy wind speed differences.


Journal of Geophysical Research | 2011

Separating signal and noise in atmospheric temperature changes: The importance of timescale

Benjamin D. Santer; Carl A. Mears; Charles Doutriaux; Peter Caldwell; Peter J. Gleckler; T. M. L. Wigley; Susan Solomon; N. P. Gillett; Detelina P. Ivanova; Thomas R. Karl; John R. Lanzante; Gerald A. Meehl; Peter A. Stott; Karl E. Taylor; Peter W. Thorne; Michael F. Wehner; Frank J. Wentz

We compare global-scale changes in satellite estimates of the temperature of the lower troposphere (TLT) with model simulations of forced and unforced TLT changes. While previous work has focused on a single period of record, we select analysis timescales ranging from 10 to 32 years, and then compare all possible observed TLT trends on each timescale with corresponding multi-model distributions of forced and unforced trends. We use observed estimates of the signal component of TLT changes and model estimates of climate noise to calculate timescale-dependent signal-to-noise ratios (S/N). These ratios are small (less than 1) on the 10-year timescale, increasing to more than 3.9 for 32-year trends. This large change in S/N is primarily due to a decrease in the amplitude of internally generated variability with increasing trend length. Because of the pronounced effect of interannual noise on decadal trends, a multi-model ensemble of anthropogenically-forced simulations displays many 10-year periods with little warming. A single decade of observational TLT data is therefore inadequate for identifying a slowly evolving anthropogenic warming signal. Our results show that temperature records of at least 17 years in length are required for identifying human effects on global-mean tropospheric temperature. Copyright 2011 by the American Geophysical Union.


Journal of Climate | 2004

Uncertainty in Signals of Large-Scale Climate Variations in Radiosonde and Satellite Upper-Air Temperature Datasets

Dian J. Seidel; J. K. Angell; John R. Christy; Melissa Free; S. A. Klein; John R. Lanzante; Carl A. Mears; D. E. Parker; M. Schabel; Roy W. Spencer; A. Sterin; Peter W. Thorne; Frank J. Wentz

There is no single reference dataset of long-term global upper-air temperature observations, although several groups have developed datasets from radiosonde and satellite observations for climate-monitoring purposes. The existence of multiple data products allows for exploration of the uncertainty in signals of climate variations and change. This paper examines eight upper-air temperature datasets and quantifies the magnitude and uncertainty of various climate signals, including stratospheric quasi-biennial oscillation (QBO) and tropospheric ENSO signals, stratospheric warming following three major volcanic eruptions, the abrupt tropospheric warming of 1976‐77, and multidecadal temperature trends. Uncertainty estimates are based both on the spread of signal estimates from the different observational datasets and on the inherent statistical uncertainties of the signal in any individual dataset. The large spread among trend estimates suggests that using multiple datasets to characterize large-scale upperair temperature trends gives a more complete characterization of their uncertainty than reliance on a single dataset. For other climate signals, there is value in using more than one dataset, because signal strengths vary. However, the purely statistical uncertainty of the signal in individual datasets is large enough to effectively encompass the spread among datasets. This result supports the notion of an 11th climate-monitoring principle, augmenting the 10 principles that have now been generally accepted (although not generally implemented) by the climate community. This 11th principle calls for monitoring key climate variables with multiple, independent observing systems for measuring the variable, and multiple, independent groups analyzing the data.

Collaboration


Dive into the Carl A. Mears's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin D. Santer

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Michael F. Wehner

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Karl E. Taylor

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerald A. Meehl

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Peter J. Gleckler

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Susan Solomon

University of California

View shared research outputs
Top Co-Authors

Avatar

Charles Doutriaux

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Cheng-Zhi Zou

National Oceanic and Atmospheric Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge