Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl Dobkin is active.

Publication


Featured researches published by Carl Dobkin.


Neuroscience Letters | 2005

Decreased GABAA receptor expression in the seizure-prone fragile X mouse

Abdeslem El Idrissi; Xiaohua Ding; Jason Scalia; Ekkhart Trenkner; W. Ted Brown; Carl Dobkin

The fragile X mental retardation syndrome is due to the transcriptional silence of the fragile X gene, FMR1, and to the resulting loss of the FMR1 product, FMRP. The pathogenesis of the syndrome, however, is not understood. Increased prevalence of childhood seizures is a feature of the fragile X syndrome and increased seizure susceptibility is seen in the fragile X knock out mouse model for this disorder. To investigate the increased seizure susceptibility, we examined GABA(A) receptor expression in the FVB/N fragile X mouse. Western blot analysis revealed that expression of the GABA(A) receptor beta subunit (GABA(A) beta), which is required for receptor function, was reduced in the cortex, hippocampus, diencephalon and brainstem in adult male fragile X mice. Immunohistochemical analysis of brain sections indicated a reduction in GABA(A) beta immunoreactivity. We also found increased expression of glutamic acid decarboxylase, the enzyme responsible for GABA synthesis, in the same regions that showed GABA(A) beta reduction. These results indicate that the absence of Fmrp leads to GABAergic system alterations that could account for the increased seizure susceptibility of the fragile X mouse. These alterations may also be relevant to the seizures and the abnormal behaviors in the human syndrome.


Neuroscience | 2000

Fmr1 knockout mouse has a distinctive strain-specific learning impairment.

Carl Dobkin; Ausma Rabe; Ruth Dumas; Abdeslem El Idrissi; Harriet Haubenstock; W. Ted Brown

The Fmr1 gene knockout mouse is a model for the human Fragile X mental retardation syndrome. Fmr1 knockout mice with a C57BL/6-129/OlaHsd hybrid background have been reported to have only a very mild deficiency in learning the Morris water maze task. We compared the effect of this knockout mutation on learning in mice with either an FVB/N-129/OlaHsd hybrid background or a C57BL/6 background. When FVB-129 mice were tested in a cross-shaped water maze task, the knockout mice showed a pronounced deficiency in their ability to learn the position of a hidden escape platform in comparison to normal littermates. In contrast, knockout mice with a C57BL/6 background learned the maze just as well as their normal littermates. Fear conditioning did not reveal differences between knockout and normal mice in either background. These results show that silencing the Fmr1 gene clearly interfered with learning a specific visuospatial task in FVB/N-129 hybrid mice but not in C57BL/6 mice. The strain dependence may model the influence of genetic background in the human Fragile X syndrome.


Journal of Neuroinflammation | 2011

IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation

Hongen Wei; Hua Zou; Ashfaq M. Sheikh; Mazhar Malik; Carl Dobkin; W. Ted Brown; Xiaohong Li

BackgroundAlthough the cellular mechanisms responsible for the pathogenesis of autism are not understood, a growing number of studies have suggested that localized inflammation of the central nervous system (CNS) may contribute to the development of autism. Recent evidence shows that IL-6 has a crucial role in the development and plasticity of CNS.MethodsImmunohistochemistry studies were employed to detect the IL-6 expression in the cerebellum of study subjects. In vitro adenoviral gene delivery approach was used to over-express IL-6 in cultured cerebellar granule cells. Cell adhesion and migration assays, DiI labeling, TO-PRO-3 staining and immunofluorescence were used to examine cell adhesion and migration, dendritic spine morphology, cell apoptosis and synaptic protein expression respectively.ResultsIn this study, we found that IL-6 was significantly increased in the cerebellum of autistic subjects. We investigated how IL-6 affects neural cell development and function by transfecting cultured mouse cerebellar granule cells with an IL-6 viral expression vector. We demonstrated that IL-6 over-expression in granule cells caused impairments in granule cell adhesion and migration but had little effect on the formation of dendritic spines or granule cell apoptosis. However, IL-6 over-expression stimulated the formation of granule cell excitatory synapses, without affecting inhibitory synapses.ConclusionsOur results provide further evidence that aberrant IL-6 may be associated with autism. In addition, our results suggest that the elevated IL-6 in the autistic brain could alter neural cell adhesion, migration and also cause an imbalance of excitatory and inhibitory circuits. Thus, increased IL-6 expression may be partially responsible for the pathogenesis of autism.


American Journal of Medical Genetics | 1996

Prenatal diagnosis and carrier screening for fragile X by PCR

W. Ted Brown; Sarah L. Nolin; George E. Houck; Xiaohua Ding; Anne Glicksman; Shuyun Li; Sandra L. Stark‐Houck; Patricia Brophy; Charlotte J. Duncan; Carl Dobkin; Ed Jenkins

During the past three years, we have conducted fragile X DNA studies for carrier screening and prenatal diagnosis using a previously described PCR protocol that accurately resolves normal FMR1 alleles and premutations and detects most full mutations [Brown et al., JAMA 270:1569-1575, 1996]. A total of 344 pregnant women with a family history of mental retardation of unknown cause were screened and 6 fragile X carriers were identified: two had full mutations, and four had premutations. The mentally retarded relatives of two other women were found to be fragile X positive although the women themselves were not carriers. In all, 6 carriers and 8 fragile X families were identified by this screening. We have also screened 40 pregnant women who were members of previously identified fragile X families, but whose carrier status was unknown. Ten were found to be carriers and were offered prenatal diagnosis. Prospective prenatal testing of 84 carrier women correctly detected 31 fetal samples (19 females, 12 males) with full mutations and 6 with premutations (2 females, 4 males). No false positives but one false negative occurred early on due to undetected maternal cell contamination. In addition, screening of 806 males with developmental delays of unknown cause gave positive results in 33 (4.1%). Potential problems and pitfalls of direct DNA testing are discussed. Because of the proven success of fragile X screening with direct molecular analysis, screening of all undiagnosed individuals with mental retardation and at risk pregnant women should now be considered. The identification of fragile X carriers and prenatal diagnosis of their pregnancies should significantly reduce the prevalence of this syndrome.


Prenatal Diagnosis | 2011

Fragile X analysis of 1112 prenatal samples from 1991 to 2010

Sarah L. Nolin; Anne Glicksman; Xiaohua Ding; Nicole Ersalesi; W. Ted Brown; Stephanie L. Sherman; Carl Dobkin

To determine risks of expansion for normal, intermediate, and premutation FMR1 CGG repeats.


Human Genetics | 1992

Polymerase chain reaction analysis of fragile X mutations

Susan H. Erster; W. Ted Brown; Ponmani Goonewardena; Carl Dobkin; Edmund C. Jenkins; Robert G. Pergolizzi

SummaryThe mutation that underlies the fragile X syndrome is presumed to be a large expansion in the number of CGG repeats within the gene FMR-1. The unusually GC-rich composition of the expanded region has impeded attempts to amplify it by the polymerase chain reaction (PCR). We have developed a PCR protocol that successfully amplifies the (CGG)n region in normal, carrier and affected individuals. The PCR analysis of several large fragile X families is presented. The PCR results agree with those obtained by direct genomic Southern blot analyses. These favorable comparisons suggest that the PCR assay may be suitable for rapid testing for fragile X mutations and premutations and genetic screening of at-risk individuals.


American Journal of Medical Genetics | 1996

Mosaicism for the FMR1 gene influences adaptive skills development in fragile X-affected males

Ira L. Cohen; Sarah L. Nolin; Vicki Sudhalter; Xiaohua Ding; Carl Dobkin; W. Ted Brown

Fragile X syndrome is one of the most common forms of inherited mental retardation, and the first of a new class of genetic disorders associated with expanded trinucleotide repeats. Previously, we found that about 41% of affected males are mosaic for this mutation in that some of their blood cells have an active fragile X gene and others do not. It has been hypothesized that these mosaic cases should show higher levels of functioning than those who have only the inactive full mutation gene, but previous studies have provided negative or equivocal results. In the present study, the cross-sectional development of communication, self-care, socialization, and motor skills was studied in 46 males with fragile X syndrome under age 20 years as a function of two variables: age and the presence or absence of mosaicism. The rate of adaptive skills development was 2-4 times as great in mosaic cases as in full mutation cases. There was also a trend for cases with autism to be more prevalent in the full-mutation group. These results have implications for prognosis, for the utility of gene or protein replacement therapies for this disorder, and for understanding the association between mental retardation, developmental disorders, and fragile X syndrome.


American Journal of Medical Genetics | 1996

Fragile X founder effects and new mutations in Finland

Nan Zhong; Eliisa Kajanoja; Bram Smits; James Pietrofesa; Dennis Curley; Dauwen Wang; Weina Ju; Sally Nolin; Carl Dobkin; Markku Ryynänen; W. Ted Brown

The apparent associations between fragile X mutations and nearby microsatellites may reflect both founder effects and microsatellite instability. To gain further insight into their relative contributions, we typed a sample of 56 unrelated control and 37 fragile X chromosomes from an eastern Finnish population for FMR1 CGG repeat lengths, AGG interspersion patterns, DXS548, FRAXAC1, FRAXE and a new polymorphic locus, Alu-L. In the controls, the most common FMR1 allele was 30 repeats with a range of 20 to 47 and a calculated heterozygosity of 88%. A strong founder effect was observed for locus DXS548 with 95% of fragile X chromosomes having the 21 CA repeat (196 bp) allele compared to 17% of controls, while none of the fragile X but 69% of controls had the 20 repeat allele. Although the FRAXAC1 locus is much closer than DXS548 to FMR1 (7 kb vs. 150 kb), there was no significant difference between fragile X and control FRAXAC1 allele distributions. The FRAXE repeat, located 600 kb distal to FMR1, was found to show strong linkage disequilibrium as well. A newly defined polymorphism, Alu-L, located at approximately 40 kb distal to the FMR1 repeat, showed very low polymorphism in the Finnish samples. Analysis of the combined loci DXS548-FRAXAC1-FRAXE showed three founder haplotypes. Haplotype 21-19-16 was found on 27 (75%) of fragile X chromosomes but on none of controls. Three (8.4%) fragile X chromosomes had haplotypes 21-19-15, 21-19-20, and 21-19-25 differing from the common fragile X haplotype only in FRAXE. These could have arisen by recombination or from mutations of FRAXE. A second haplotype 21-18-17 was found in four (11.1%) fragile X chromosomes but only one (1.9%) control. This may represent a more recent founder mutation. A third haplotype 25-21-15, seen in two fragile X chromosomes (5.6%) and one (1.9%) control, was even less common and thus may represent an even more recent mutation or admixture of immigrant types. Analysis of the AGG interspersions within the FMR1 CGG repeat showed that 7/8 premutation chromosomes lacked an AGG whereas all controls had at least one AGG. This supports the hypothesis that the mutation of AGG to CGG leads to repeat instability and mutational expansion.


PLOS ONE | 2012

The Therapeutic effect of Memantine through the Stimulation of Synapse Formation and Dendritic Spine Maturation in Autism and Fragile X Syndrome

Hongen Wei; Carl Dobkin; Ashfaq M. Sheikh; Mazhar Malik; W. Ted Brown; Xiaohong Li

Although the pathogenic mechanisms that underlie autism are not well understood, there is evidence showing that metabotropic and ionotropic glutamate receptors are hyper-stimulated and the GABAergic system is hypo-stimulated in autism. Memantine is an uncompetitive antagonist of NMDA receptors and is widely prescribed for treatment of Alzheimers disease treatment. Recently, it has been shown to improve language function, social behavior, and self-stimulatory behaviors of some autistic subjects. However the mechanism by which memantine exerts its effect remains to be elucidated. In this study, we used cultured cerebellar granule cells (CGCs) from Fmr1 knockout (KO) mice, a mouse model for fragile X syndrome (FXS) and syndromic autism, to examine the effects of memantine on dendritic spine development and synapse formation. Our results show that the maturation of dendritic spines is delayed in Fmr1-KO CGCs. We also detected reduced excitatory synapse formation in Fmr1-KO CGCs. Memantine treatment of Fmr1-KO CGCs promoted cell adhesion properties. Memantine also stimulated the development of mushroom-shaped mature dendritic spines and restored dendritic spine to normal levels in Fmr1-KO CGCs. Furthermore, we demonstrated that memantine treatment promoted synapse formation and restored the excitatory synapses to a normal range in Fmr1-KO CGCs. These findings suggest that memantine may exert its therapeutic capacity through a stimulatory effect on dendritic spine maturation and excitatory synapse formation, as well as promoting adhesion of CGCs.


American Journal of Medical Genetics | 1996

Reverse mutations in the fragile X syndrome.

W. Ted Brown; George E. Houck; Xiaohua Ding; Nan Zhong; Sarah L. Nolin; Anne Glicksman; Carl Dobkin; Edmund C. Jenkins

Three females were identified who have apparent reversal of fragile X premutations. Based on haplotype analysis of nearby markers, they were found to have inherited a fragile X chromosome from their premutation carrier mothers, and yet had normal size FMR1 repeat alleles. The changes in repeat sizes from mother to daughter was 95 to 35 in the first, 145 to 43 in the second, and 82 to 33 in the third. In the first family, mutations of the nearby microsatellites FRAXAC2 and DXS548 were also observed. In the other two, only mutations involving the FMR1 repeats were found. We suggest differing mutational mechanisms such as gene conversion versus DNA replication slippage may underlie such reversions. We estimate that such revertants may occur among 1% or less of premutation carrier offspring. Our results indicate that women identified to be carriers by linkage should be retested by direct DNA analysis.

Collaboration


Dive into the Carl Dobkin's collaboration.

Top Co-Authors

Avatar

W. Ted Brown

North Shore University Hospital

View shared research outputs
Top Co-Authors

Avatar

Sarah L. Nolin

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nan Zhong

Prince of Songkla University

View shared research outputs
Top Co-Authors

Avatar

Edmund C. Jenkins

North Shore University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Glicksman

North Shore University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fred Russell Kramer

Public Health Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ponmani Goonewardena

North Shore University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge