Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl J. March is active.

Publication


Featured researches published by Carl J. March.


Science | 1998

An Essential Role for Ectodomain Shedding in Mammalian Development

Jacques J. Peschon; Jennifer Slack; Pranitha Reddy; Kim L. Stocking; Susan W. Sunnarborg; David C. Lee; William E. Russell; Beverly J. Castner; Richard S. Johnson; Jeffrey N. Fitzner; Rogely W. Boyce; Nicole Nelson; Carl J. Kozlosky; Martin Wolfson; Charles T. Rauch; Douglas Pat Cerretti; Raymond J. Paxton; Carl J. March; Roy A. Black

The ectodomains of numerous proteins are released from cells by proteolysis to yield soluble intercellular regulators. The responsible protease, tumor necrosis factor-alpha converting enzyme (TACE), has been identified only in the case when tumor necrosis factor-alpha (TNFalpha) is released. Analyses of cells lacking this metalloproteinase-disintegrin revealed an expanded role for TACE in the processing of other cell surface proteins, including a TNF receptor, the L-selectin adhesion molecule, and transforming growth factor-alpha (TGFalpha). The phenotype of mice lacking TACE suggests an essential role for soluble TGFalpha in normal development and emphasizes the importance of protein ectodomain shedding in vivo.


Cell | 1990

Identification of a ligand for the c-kit proto-oncogene

Douglas E. Williams; June Eisenman; Allison Baird; Charles Rauch; Kirk P. Van Ness; Carl J. March; Linda S. Park; Unja Martin; Diane Y. Mochizukl; H. Scott Boswell; Burgess Gs; David Cosman; Stewart D. Lyman

We report the purification and N-terminal amino acid sequence of a novel mast cell growth factor, termed MGF, from the supernatants of a murine stromal cell line. A panel of interleukin 3-dependent cell lines were screened for responsiveness to partially purified MGF in [3H]thymidine incorporation assays; proliferative stimulation of these cells in response to MGF correlated with expression of mRNA for the c-kit protooncogene. MGF was shown to be a ligand for c-kit by cross-linking 125I-labeled MGF to c-kit-expressing cells with subsequent immunoprecipitation of the complex with antiserum specific for the C-terminus of c-kit. This establishes MGF as a ligand for the c-kit protein.


Cell | 1990

Molecular cloning of mast cell growth factor, a hematopoietin that is active in both membrane bound and soluble forms

Dirk M. Anderson; Stewart D. Lyman; Allison Baird; Janis M. Wignall; June Eisenman; Charles Rauch; Carl J. March; H.Scott Boswell; Steven D. Gimpel; David Cosman; Douglas E. Williams

We have previously reported the identification of a novel mast cell growth factor (MGF) that was shown to be a ligand for c-kit and is encoded by a gene that maps near the steel locus on mouse chromosome 10. We now report the cloning of cDNAs encoding the MGF protein. The MGF protein encoded by this cDNA can be expressed in a biologically active form as either a membrane bound protein or as a soluble factor. The soluble protein promotes the proliferation of MGF-responsive cell lines and, in the presence of erythropoietin, stimulates the formation of macroscopic [corrected] erythroid and multilineage hematopoietic colonies.


Cell | 1989

The murine interleukin-4 receptor: Molecular cloning and characterization of secreted and membrane bound forms

Bruce Mosley; M. Patricia Beckmann; Carl J. March; Rejean L. Idzerda; Steven D. Gimpel; Tim VandenBos; Della Friend; Alan Alpert; Dirk M. Anderson; Jana L. Jackson; Janis M. Wignall; Craig A. Smith; Byron Gallis; John E. Sims; David L. Urdal; Michael B. Widmer; David Cosman; Linda S. Park

Receptors for interleukin-4 (IL-4) are expressed at low levels on a wide variety of primary cells and cultured cell lines. Fluorescence-activated sorting of CTLL-2 cells resulted in the isolation of a subclone, CTLL 19.4, which expressed 10(6) IL-4 receptors per cell. These cells were used for the purification of IL-4 receptor protein and to prepare a hybrid-subtracted cDNA probe for isolation of cDNA clones. Three classes of IL-4 receptor cDNA were identified. The first encoded a 140 kd membrane bound IL-4 receptor containing extracellular, transmembrane, and cytoplasmic domains. The second class lacked the cytoplasmic region, and the third encoded a secreted form of the receptor. All cDNA clones expressed in COS-7 cells had IL-4 binding properties comparable to the native IL-4 receptor. The soluble form of the IL-4 receptor blocked the ability of IL-4 to induce CTLL cell proliferation and may represent a regulatory molecule specific for IL-4-dependent immune responses.


Cell | 1990

Cloning of the human and murine interleukin-7 receptors: Demonstration of a soluble form and homology to a new receptor superfamily

Raymond G. Goodwin; Della Friend; Steven F. Ziegler; Rita Jerzy; Ben A. Falk; Steve Gimpel; David Cosman; Steven K. Dower; Carl J. March; Anthony E. Namen; Linda S. Park

cDNA clones encoding the human and murine interleukin-7 (IL-7) receptor were isolated and expressed in COS-7 cells. Binding of radiolabeled IL-7 to the recombinant IL-7 receptors produced curvilinear Scatchard plots containing high and low affinity classes. These binding properties, as well as the molecular size of the cloned receptor, were comparable to the native forms of the IL-7 receptor. In addition, several cDNA clones were isolated that encode a secreted form of the human IL-7 receptor capable of binding IL-7 in solution. Analysis of the sequence of the IL-7 receptor revealed significant homology in the extracellular domain to several recently cloned cytokine receptors, demonstrating that the IL-7 receptor is a member of a new receptor superfamily.


Trends in Biochemical Sciences | 1990

A new cytokine receptor superfamily

David Cosman; Stewart D. Lyman; Rejean L. Idzerda; M. Patricia Beckmann; Linda S. Park; Raymond G. Goodwin; Carl J. March

The amino acid sequences of several, recently cloned cytokine receptors show significant homologies, primarily in their extracellular, ligand-binding domains. With one exception, their cognate cytokines mediate biological activities on a variety of hematopoietic cell types; thus we have designated the receptors as the hematopoietic receptor superfamily.


Gene | 1987

Expression, purification and characterization of recombinant marine granulocyte-macrophage colony-stimulating factor and bovine interleukin-2 from yeast

Virginia L Price; Diane Y. Mochizuki; Carl J. March; David Cosman; Michael C Deeley; Ralph Klinke; William Clevenger; Steven Gillis; Paul E. Baker; David L. Urdal

Expression and secretion of two lymphokines, murine granulocyte-macrophage colony-stimulating factor (MuGM-CSF) and bovine interleukin-2 (BoIL-2), to levels of 50-60 mg per liter were achieved by placing these cDNAs in a Saccharomyces cerevisiae expression vector that utilized the yeast alcohol dehydrogenase-2 promoter and alpha-factor leader peptide. These lymphokines were purified to homogeneity by direct application of the crude yeast medium to reversed-phase high-performance liquid chromatography. Despite the fact that both lymphokines contain at least one N-glycosylation site and have identical N-terminal residues (Ala-Pro-Thr), recombinant (R) GM-CSF was found to be heterogeneously glycosylated by yeast while RBoIL-2 was secreted without glycosylation. Additionally, approximately 40% of the RGM-CSF was found to be proteolytically cleaved after the second amino acid residue, while RBoIL-2 was found to be intact.


Archives of Biochemistry and Biophysics | 1992

Purification of interleukin-1β converting enzyme, the protease that cleaves the interleukin-1β precursor

Shirley R. Kronheim; Amy Mumma; Teresa Greenstreet; Paula J. Glackin; Kirk P. Van Ness; Carl J. March; Roy A. Black

We have purified the IL-1β converting enzyme from the THP-1 cell line using standard chromatographic techniques and obtained the N-terminal amino acid sequence of this novel protein. After stimulation of THP-1 cells with lipopolysaccharide, hydroxyurea, and silica, the protease was solubilized by multiple freeze/thawing. The protein was purified by ion-exchange chromatography, affinity chromatography on blue agarose, gel filtration, and chromatofocusing. The molecular weight of the protein is approximately 22,000 Da and the pI is between 7.1 and 6.8. The overall yield for this procedure was 16% of the activity found in the initial cell lysates. An antiserum raised against a peptide based on the N-terminus was used to precipitate the protease, confirming our identification of the 22,000-Da protein as the IL-1β converting enzyme.


Journal of Computer-aided Molecular Design | 1992

An approach to computer-aided inhibitor design: Application to cathepsin L

Sucha Sudarsanam; G. Duke Virca; Carl J. March; Subhashini Srinivasan

SummaryWe have developed an approach to search for molecules that can be used as lead compounds in designing an inhibitor for a given proteolytic enzyme when the 3D structure of a homologous protein is known. This approach is based on taking the cast of the binding pocket of the protease and comparing its dimensions with that of the dimensions of small molecules. Herein the 3D structure of papain is used to model cathepsin L using the comparative modeling technique. The cast of the binding pocket is computed using the crystal structure of papain because the structures of papain and the model of cathepsin L are found to be similar at the binding site. The dimensions of the cast of the binding site of papain are used to screen for molecules from the Cambridge Structural Database (CSD) of small molecules. Twenty molecules out of the 80 000 small molecules in the CSD are found to have dimensions that are accommodated by the papain binding pocket. Visual comparison of the shapes of the cast and the 20 screened molecules resulted in identifying brevotoxin b, a toxin isolated from the ‘red tide’ dinoflagellate Ptycho brevis (previously classified as Gymonodium breve), as the structure that best fits the binding pocket of papain. We tested the proteolytic activity of papain and cathepsin L in the presence of brevotoxin b and found inhibition of papain and cathepsin L with Kis of 25 μM and 0.6 μM, respectively. We also compare our method with a more elaborate method in the literature, by presenting our results on the computer search for inhibitors of the HIV-1 protease.


Journal of Biological Chemistry | 1998

Structure-Function Analysis of FLT3 Ligand-FLT3 Receptor Interactions Using a Rapid Functional Screen

Thomas J. Graddis; Kenneth Brasel; Della Friend; Subhashini Srinivasan; SiowFong Wee; Stewart D. Lyman; Carl J. March; Jeffrey T. McGrew

FLT3 ligand (FLT3L) stimulates primitive hematopoietic cells by binding to and activating the FLT3 receptor (FLT3R). We carried out a structure-activity study of human FLT3L in order to define the residues involved in receptor binding. We developed a rapid method to screen randomly mutagenized FLT3L using a FLT3R-Fc fusion protein to probe the relative binding activities of mutated ligand. Approximately 60,000 potential mutants were screened, and the DNA from 59 clones was sequenced. Thirty-one single amino acid substitutions at 24 positions of FLT3L either enhanced or reduced activity in receptor binding and cell proliferation assays. Eleven representative proteins were purified and analyzed for receptor affinity, specific activity, and physical properties. Receptor affinity and bioactivity were highly correlated. FLT3L affinity for receptor improved when four individual mutations that enhance FLT3L receptor affinity were combined in a single molecule. A model of FLT3L three-dimensional structure was generated based on sequence alignment and x-ray structure of macrophage colony-stimulating factor. Most residues implicated in receptor binding are widely dispersed in the primary structure of FLT3L, yet they localize to a surface patch in the tertiary model. A mutation that maps to and is predicted to disrupt the proposed dimerization interface between FLT3L monomers exhibits a Stokes radius that is concentration-dependent, suggesting that this mutation disrupts the FLT3L dimer.

Collaboration


Dive into the Carl J. March's collaboration.

Top Co-Authors

Avatar

David L. Urdal

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Mosley

Roswell Park Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge