Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl-Johan Rubin is active.

Publication


Featured researches published by Carl-Johan Rubin.


Nature | 2010

Whole-genome resequencing reveals loci under selection during chicken domestication

Carl-Johan Rubin; Michael C. Zody; Jonas Eriksson; Jennifer R. S. Meadows; Ellen Sherwood; Matthew T. Webster; Lin Jiang; Max Ingman; Ted Sharpe; Sojeong Ka; Finn Hallböök; Francois Besnier; Örjan Carlborg; Bertrand Bed’hom; Michèle Tixier-Boichard; Per Jensen; P. B. Siegel; Kerstin Lindblad-Toh; Leif Andersson

Domestic animals are excellent models for genetic studies of phenotypic evolution. They have evolved genetic adaptations to a new environment, the farm, and have been subjected to strong human-driven selection leading to remarkable phenotypic changes in morphology, physiology and behaviour. Identifying the genetic changes underlying these developments provides new insight into general mechanisms by which genetic variation shapes phenotypic diversity. Here we describe the use of massively parallel sequencing to identify selective sweeps of favourable alleles and candidate mutations that have had a prominent role in the domestication of chickens (Gallus gallus domesticus) and their subsequent specialization into broiler (meat-producing) and layer (egg-producing) chickens. We have generated 44.5-fold coverage of the chicken genome using pools of genomic DNA representing eight different populations of domestic chickens as well as red jungle fowl (Gallus gallus), the major wild ancestor. We report more than 7,000,000 single nucleotide polymorphisms, almost 1,300 deletions and a number of putative selective sweeps. One of the most striking selective sweeps found in all domestic chickens occurred at the locus for thyroid stimulating hormone receptor (TSHR), which has a pivotal role in metabolic regulation and photoperiod control of reproduction in vertebrates. Several of the selective sweeps detected in broilers overlapped genes associated with growth, appetite and metabolic regulation. We found little evidence that selection for loss-of-function mutations had a prominent role in chicken domestication, but we detected two deletions in coding sequences that we suggest are functionally important. This study has direct application to animal breeding and enhances the importance of the domestic chicken as a model organism for biomedical research.


Nature | 2013

Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse

Ludovic Orlando; Aurélien Ginolhac; Guojie Zhang; Duane G. Froese; Anders Albrechtsen; Mathias Stiller; Mikkel Schubert; Enrico Cappellini; Bent Petersen; Ida Moltke; Philip L. F. Johnson; Matteo Fumagalli; Julia T. Vilstrup; Maanasa Raghavan; Thorfinn Sand Korneliussen; Anna-Sapfo Malaspinas; Josef Korbinian Vogt; Damian Szklarczyk; Christian D. Kelstrup; Jakob Vinther; Andrei Dolocan; Jesper Stenderup; Amhed M. V. Velazquez; James A. Cahill; Morten Rasmussen; Xiaoli Wang; Jiumeng Min; Grant D. Zazula; Andaine Seguin-Orlando; Cecilie Mortensen

The rich fossil record of equids has made them a model for evolutionary processes. Here we present a 1.12-times coverage draft genome from a horse bone recovered from permafrost dated to approximately 560–780 thousand years before present (kyr bp). Our data represent the oldest full genome sequence determined so far by almost an order of magnitude. For comparison, we sequenced the genome of a Late Pleistocene horse (43 kyr bp), and modern genomes of five domestic horse breeds (Equus ferus caballus), a Przewalski’s horse (E. f. przewalskii) and a donkey (E. asinus). Our analyses suggest that the Equus lineage giving rise to all contemporary horses, zebras and donkeys originated 4.0–4.5 million years before present (Myr bp), twice the conventionally accepted time to the most recent common ancestor of the genus Equus. We also find that horse population size fluctuated multiple times over the past 2 Myr, particularly during periods of severe climatic changes. We estimate that the Przewalski’s and domestic horse populations diverged 38–72 kyr bp, and find no evidence of recent admixture between the domestic horse breeds and the Przewalski’s horse investigated. This supports the contention that Przewalski’s horses represent the last surviving wild horse population. We find similar levels of genetic variation among Przewalski’s and domestic populations, indicating that the former are genetically viable and worthy of conservation efforts. We also find evidence for continuous selection on the immune system and olfaction throughout horse evolution. Finally, we identify 29 genomic regions among horse breeds that deviate from neutrality and show low levels of genetic variation compared to the Przewalski’s horse. Such regions could correspond to loci selected early during domestication.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Strong signatures of selection in the domestic pig genome

Carl-Johan Rubin; Hendrik-Jan Megens; Alvaro Martinez Barrio; Khurram Maqbool; Shumaila Sayyab; Doreen Schwochow; Chao Wang; Örjan Carlborg; Patric Jern; Claus B. Jørgensen; Alan Archibald; Merete Fredholm; M.A.M. Groenen; Leif Andersson

Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig—the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection.


Nature | 2012

Mutations in DMRT3 affect locomotion in horses and spinal circuit function in mice

L. Andersson; Martin Larhammar; Fatima Memic; Hanna Wootz; Doreen Schwochow; Carl-Johan Rubin; Kalicharan Patra; Thorvaldur Arnason; Lisbeth Wellbring; Göran Hjälm; Freyja Imsland; Jessica L. Petersen; Molly E. McCue; James R. Mickelson; Gus Cothran; Nadav Ahituv; L. Roepstorff; Sofia Mikko; Anna Vallstedt; Gabriella Lindgren; Leif Andersson; Klas Kullander

Locomotion in mammals relies on a central pattern-generating circuitry of spinal interneurons established during development that coordinates limb movement. These networks produce left–right alternation of limbs as well as coordinated activation of flexor and extensor muscles. Here we show that a premature stop codon in the DMRT3 gene has a major effect on the pattern of locomotion in horses. The mutation is permissive for the ability to perform alternate gaits and has a favourable effect on harness racing performance. Examination of wild-type and Dmrt3-null mice demonstrates that Dmrt3 is expressed in the dI6 subdivision of spinal cord neurons, takes part in neuronal specification within this subdivision, and is critical for the normal development of a coordinated locomotor network controlling limb movements. Our discovery positions Dmrt3 in a pivotal role for configuring the spinal circuits controlling stride in vertebrates. The DMRT3 mutation has had a major effect on the diversification of the domestic horse, as the altered gait characteristics of a number of breeds apparently require this mutation.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Population-scale sequencing reveals genetic differentiation due to local adaptation in Atlantic herring

Sangeet Lamichhaney; Alvaro Martinez Barrio; Nima Rafati; Görel Sundström; Carl-Johan Rubin; Elizabeth R. Gilbert; Jonas Berglund; Anna Wetterbom; Linda Laikre; Matthew T. Webster; Manfred Grabherr; Nils Ryman; Leif Andersson

The Atlantic herring (Clupea harengus), one of the most abundant marine fishes in the world, has historically been a critical food source in Northern Europe. It is one of the few marine species that can reproduce throughout the brackish salinity gradient of the Baltic Sea. Previous studies based on few genetic markers have revealed a conspicuous lack of genetic differentiation between geographic regions, consistent with huge population sizes and minute genetic drift. Here, we present a cost-effective genome-wide study in a species that lacks a genome sequence. We first assembled a muscle transcriptome and then aligned genomic reads to the transcripts, creating an “exome assembly,” capturing both exons and flanking sequences. We then resequenced pools of fish from a wide geographic range, including the Northeast Atlantic, as well as different regions in the Baltic Sea, aligned the reads to the exome assembly, and identified 440,817 SNPs. The great majority of SNPs showed no appreciable differences in allele frequency among populations; however, several thousand SNPs showed striking differences, some approaching fixation for different alleles. The contrast between low genetic differentiation at most loci and striking differences at others implies that the latter category primarily reflects natural selection. A simulation study confirmed that the distribution of the fixation index FST deviated significantly from expectation for selectively neutral loci. This study provides insights concerning the population structure of an important marine fish and establishes the Atlantic herring as a model for population genetic studies of adaptation and natural selection.


PLOS Genetics | 2009

Copy Number Variation in Intron 1 of SOX5 Causes the Pea-comb Phenotype in Chickens

Dominic Wright; Henrik Boije; Jennifer R. S. Meadows; Bertrand Bed'Hom; David Gourichon; Agathe Vieaud; Michèle Tixier-Boichard; Carl-Johan Rubin; Freyja Imsland; Finn Hallböök; Leif Andersson

Pea-comb is a dominant mutation in chickens that drastically reduces the size of the comb and wattles. It is an adaptive trait in cold climates as it reduces heat loss and makes the chicken less susceptible to frost lesions. Here we report that Pea-comb is caused by a massive amplification of a duplicated sequence located near evolutionary conserved non-coding sequences in intron 1 of the gene encoding the SOX5 transcription factor. This must be the causative mutation since all other polymorphisms associated with the Pea-comb allele were excluded by genetic analysis. SOX5 controls cell fate and differentiation and is essential for skeletal development, chondrocyte differentiation, and extracellular matrix production. Immunostaining in early embryos demonstrated that Pea-comb is associated with ectopic expression of SOX5 in mesenchymal cells located just beneath the surface ectoderm where the comb and wattles will subsequently develop. The results imply that the duplication expansion interferes with the regulation of SOX5 expression during the differentiation of cells crucial for the development of comb and wattles. The study provides novel insight into the nature of mutations that contribute to phenotypic evolution and is the first description of a spontaneous and fully viable mutation in this developmentally important gene.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Prehistoric genomes reveal the genetic foundation and cost of horse domestication.

Mikkel Schubert; Hákon Jónsson; Dan Chang; Clio Der Sarkissian; Luca Ermini; Aurélien Ginolhac; Anders Albrechtsen; Isabelle Dupanloup; Adrien Foucal; Bent Petersen; Matteo Fumagalli; Maanasa Raghavan; Andaine Seguin-Orlando; Thorfinn Sand Korneliussen; Amhed M. V. Velazquez; Jesper Stenderup; Cindi A. Hoover; Carl-Johan Rubin; Ahmed H. Alfarhan; Saleh A. Alquraishi; Khaled A. S. Al-Rasheid; David E. MacHugh; Ted Kalbfleisch; James N. MacLeod; Edward M. Rubin; Thomas Sicheritz-Pontén; Leif Andersson; Michael Hofreiter; Tomas Marques-Bonet; M. Thomas P. Gilbert

Significance The domestication of the horse revolutionized warfare, trade, and the exchange of people and ideas. This at least 5,500-y-long process, which ultimately transformed wild horses into the hundreds of breeds living today, is difficult to reconstruct from archeological data and modern genetics alone. We therefore sequenced two complete horse genomes, predating domestication by thousands of years, to characterize the genetic footprint of domestication. These ancient genomes reveal predomestic population structure and a significant fraction of genetic variation shared with the domestic breeds but absent from Przewalski’s horses. We find positive selection on genes involved in various aspects of locomotion, physiology, and cognition. Finally, we show that modern horse genomes contain an excess of deleterious mutations, likely representing the genetic cost of domestication. The domestication of the horse ∼5.5 kya and the emergence of mounted riding, chariotry, and cavalry dramatically transformed human civilization. However, the genetics underlying horse domestication are difficult to reconstruct, given the near extinction of wild horses. We therefore sequenced two ancient horse genomes from Taymyr, Russia (at 7.4- and 24.3-fold coverage), both predating the earliest archeological evidence of domestication. We compared these genomes with genomes of domesticated horses and the wild Przewalski’s horse and found genetic structure within Eurasia in the Late Pleistocene, with the ancient population contributing significantly to the genetic variation of domesticated breeds. We furthermore identified a conservative set of 125 potential domestication targets using four complementary scans for genes that have undergone positive selection. One group of genes is involved in muscular and limb development, articular junctions, and the cardiac system, and may represent physiological adaptations to human utilization. A second group consists of genes with cognitive functions, including social behavior, learning capabilities, fear response, and agreeableness, which may have been key for taming horses. We also found that domestication is associated with inbreeding and an excess of deleterious mutations. This genetic load is in line with the “cost of domestication” hypothesis also reported for rice, tomatoes, and dogs, and it is generally attributed to the relaxation of purifying selection resulting from the strong demographic bottlenecks accompanying domestication. Our work demonstrates the power of ancient genomes to reconstruct the complex genetic changes that transformed wild animals into their domesticated forms, and the population context in which this process took place.


Journal of Clinical Microbiology | 2004

Characterization of ompA Genotypes by Sequence Analysis of DNA from All Detected Cases of Chlamydia trachomatis Infections during 1 Year of Contact Tracing in a Swedish County

Maria Lysén; Anders Österlund; Carl-Johan Rubin; Tina Persson; Ingrid Persson; Björn Herrmann

ABSTRACT In this study we aimed to characterize the ompA gene by sequencing DNA from all detected cases of Chlamydia trachomatis infection in a Swedish county during 2001, in order to improve the efficiency of contact tracing. Approximately 990 bp of the ompA gene was amplified, and sequence analysis was achieved in 678 (94%) of 725 C. trachomatis-positive cases in this unselected population. The most prevalent genotype was serotype E (39%), followed by F (21%), G (11%), D (9%), K (9%), J (7%), H (2%), B (1%), and Ia (1%). Serotype E was found in five genotype variants, with the reference sequence comprising 96% of all E cases. Serotype D was the most variable, and of seven sequence variants, three were identified as recombinants with serotype E. Altogether 29 genetic variants were detected, and mutations and recombination events are discussed. Clinical manifestations were not associated with genotypes. Sequence variation was linked to sexual networks identified by contact tracing and improved epidemiological knowledge but was of limited benefit.


BMC Genomics | 2012

Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens

Daniel Nätt; Carl-Johan Rubin; Dominic Wright; Martin Johnsson; Johan Bélteky; Leif Andersson; Per Jensen

BackgroundVariations in gene expression, mediated by epigenetic mechanisms, may cause broad phenotypic effects in animals. However, it has been debated to what extent expression variation and epigenetic modifications, such as patterns of DNA methylation, are transferred across generations, and therefore it is uncertain what role epigenetic variation may play in adaptation.ResultsIn Red Junglefowl, ancestor of domestic chickens, gene expression and methylation profiles in thalamus/hypothalamus differed substantially from that of a domesticated egg laying breed. Expression as well as methylation differences were largely maintained in the offspring, demonstrating reliable inheritance of epigenetic variation. Some of the inherited methylation differences were tissue-specific, and the differential methylation at specific loci were little changed after eight generations of intercrossing between Red Junglefowl and domesticated laying hens. There was an over-representation of differentially expressed and methylated genes in selective sweep regions associated with chicken domestication.ConclusionsOur results show that epigenetic variation is inherited in chickens, and we suggest that selection of favourable epigenomes, either by selection of genotypes affecting epigenetic states, or by selection of methylation states which are inherited independently of sequence differences, may have been an important aspect of chicken domestication.


PLOS Genetics | 2011

A Complex Genomic Rearrangement Involving the Endothelin 3 Locus Causes Dermal Hyperpigmentation in the Chicken

Ben Dorshorst; Anna-Maja Molin; Carl-Johan Rubin; Anna Johansson; Lina Strömstedt; Manh Hung Pham; Chih-Feng Chen; Finn Hallböök; Chris M. Ashwell; Leif Andersson

Dermal hyperpigmentation or Fibromelanosis (FM) is one of the few examples of skin pigmentation phenotypes in the chicken, where most other pigmentation variants influence feather color and patterning. The Silkie chicken is the most widespread and well-studied breed displaying this phenotype. The presence of the dominant FM allele results in extensive pigmentation of the dermal layer of skin and the majority of internal connective tissue. Here we identify the causal mutation of FM as an inverted duplication and junction of two genomic regions separated by more than 400 kb in wild-type individuals. One of these duplicated regions contains endothelin 3 (EDN3), a gene with a known role in promoting melanoblast proliferation. We show that EDN3 expression is increased in the developing Silkie embryo during the time in which melanoblasts are migrating, and elevated levels of expression are maintained in the adult skin tissue. We have examined four different chicken breeds from both Asia and Europe displaying dermal hyperpigmentation and conclude that the same structural variant underlies this phenotype in all chicken breeds. This complex genomic rearrangement causing a specific monogenic trait in the chicken illustrates how novel mutations with major phenotypic effects have been reused during breed formation in domestic animals.

Collaboration


Dive into the Carl-Johan Rubin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leif Andersson

Science for Life Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leif Andersson

Science for Life Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chungang Feng

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge