Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl L. Keen is active.

Publication


Featured researches published by Carl L. Keen.


Biological Trace Element Research | 1981

Influence of ashing techniques on the analysis of trace elements in animal tissue - I. Wet ashing

Michael S. Clegg; Carl L. Keen; Bo Lönnerdal; Lucille S. Hurley

A multitude of methods exists at present for the solubilization of biological tissues for atomic absorption analysis. We have examined several common methods of wet ashing using NBS bovine liver in order to determine which acids, acid combinations, or bases should be used as digesting agents for accurate and precise measurement of iron, copper, zinc, and manganese. Nitric acid proved to be the most effective wet ashing agent. With nitric acid, mean concentrations for iron, copper, and zinc differed from NBS certified values by less than 1.5% while those for manganese differed by 4%.


Journal of Gastroenterology | 2009

Probiotics and immunity

Andrea T. Borchers; Carlo Selmi; Frederick J. Meyers; Carl L. Keen; M. Eric Gershwin

Probiotics are defined as live microorganisms that, when administered in adequate amounts, confer a health benefit on the host, including the gastrointestinal tract. While this beneficial effect was originally thought to stem from improvements in the intestinal microbial balance, there is now substantial evidence that probiotics can also provide benefits by modulating immune functions. In animal models, probiotic supplementation is able to provide protection from spontaneous and chemically induced colitis by downregulating inflammatory cytokines or inducing regulatory mechanisms in a strain-specific manner. In animal models of allergen sensitization and murine models of asthma and allergic rhinitis, orally administered probiotics can strain-dependently decrease allergen-specific IgE production, in part by modulating systemic cytokine production. Certain probiotics have been shown to decrease airway hyperresponsiveness and inflammation by inducing regulatory mechanisms. Promising results have been obtained with probiotics in the treatment of human inflammatory diseases of the intestine and in the prevention and treatment of atopic eczema in neonates and infants. However, the findings are too variable to allow firm conclusions as to the effectiveness of specific probiotics in these conditions.


Current Opinion in Lipidology | 2002

Evidence that the antioxidant flavonoids in tea and cocoa are beneficial for cardiovascular health

Penny M. Kris-Etherton; Carl L. Keen

&NA; Epidemiologic studies suggest an inverse association of tea consumption with cardiovascular disease. The antioxidant effects of flavonoids in tea (including preventing oxidative damage to LDL) are among the potential mechanisms that could underlie the protective effects. Other possible mechanisms include attenuating the inflammatory process in atherosclerosis, reducing thrombosis, promoting normal endothelial function, and blocking expression of cellular adhesion molecules. Cocoa and chocolate can also be rich sources of flavonoids. Flavanols and procyanidins isolated from cocoa exhibit strong antioxidant properties in‐vitro. In acute feeding studies, flavanol‐rich cocoa and chocolate increased plasma antioxidant capacity and reduced platelet reactivity. Based on limited data, approximately 150 mg of flavonoids is needed to trigger a rapid antioxidant effect and changes in prostacyclin. Some dose‐response evidence demonstrates an antioxidant effect with approximately 500 mg flavonoids. Brewed tea typically contains approximately 172 mg total flavonoids per 235 ml (brewed for 2 min); hence, consumption of 1 and 3.5 cups of tea would be expected to elicit acute and chronic physiologic effects, respectively. Chocolate is more variable with some products containing essentially no flavonoids (0.09 mg procyanidin/g), whereas others are high in flavonoids (4 mg procyanidin/g). Thus, approximate estimates of flavonoid rich chocolate needed to exert acute and chronic effects are 38 and 125 g, respectively. Collectively, the antioxidant effects of flavonoid‐rich foods may reduce cardiovascular disease risk.


Experimental Biology and Medicine | 2004

Mushrooms, Tumors, and Immunity: An Update

Andrea T. Borchers; Carl L. Keen; M. Eric Gershwin

There is significant interest in the use of mushrooms and/or mushroom extracts as dietary supplements based on theories that they enhance immune function and promote health. To some extent, select mushrooms have been shown to have stimulatory action on immune responsiveness, particularly when studied in vitro. However, despite their widespread use for potential health benefits, there is a surprising paucity of epidemiologic and experimental studies that address the biologic activities of mushrooms after oral administration to animals or humans. There have been a number of studies that have addressed the ability of mushrooms to modulate mononuclear cell activation and the phenotypic expression of cytokines and their cognate receptors. There have also been a number of attempts to determine antitumor activities of mushrooms. Such studies are important because many of the components of mushrooms do potentially have significant biologic activity. All data, however, should be tempered by the Possibility that there are toxic levels of metals, including arsenic, lead, cadmium, and mercury as well as the presence of radioactive contamination with 137Cs. In this review, we will Present the comparative biology with respect to both immunological and antitumor activities of mushroom extracts and also highlight the need for further evidence-based research.


Journal of the American College of Cardiology | 2008

Sustained Benefits in Vascular Function Through Flavanol-Containing Cocoa in Medicated Diabetic Patients: A Double-Masked, Randomized, Controlled Trial

Jan Balzer; Tienush Rassaf; Christian Heiss; Petra Kleinbongard; Thomas Lauer; Marc W. Merx; Nicole Heussen; Heidrun B. Gross; Carl L. Keen; Hagen Schroeter; Malte Kelm

OBJECTIVES Our goal was to test feasibility and efficacy of a dietary intervention based on daily intake of flavanol-containing cocoa for improving vascular function of medicated diabetic patients. BACKGROUND Even in fully medicated diabetic patients, overall prognosis is unfavorable due to deteriorated cardiovascular function. Based on epidemiological data, diets rich in flavanols are associated with a reduced cardiovascular risk. METHODS In a feasibility study with 10 diabetic patients, we assessed vascular function as flow-mediated dilation (FMD) of the brachial artery, plasma levels of flavanol metabolites, and tolerability after an acute, single-dose ingestion of cocoa, containing increasing concentrations of flavanols (75, 371, and 963 mg). In a subsequent efficacy study, changes in vascular function in 41 medicated diabetic patients were assessed after a 30-day, thrice-daily dietary intervention with either flavanol-rich cocoa (321 mg flavanols per dose) or a nutrient-matched control (25 mg flavanols per dose). Both studies were undertaken in a randomized, double-masked fashion. Primary and secondary outcome measures included changes in FMD and plasma flavanol metabolites, respectively. RESULTS A single ingestion of flavanol-containing cocoa was dose-dependently associated with significant acute increases in circulating flavanols and FMD (at 2 h: from 3.7 +/- 0.2% to 5.5 +/- 0.4%, p < 0.001). A 30-day, thrice-daily consumption of flavanol-containing cocoa increased baseline FMD by 30% (p < 0.0001), while acute increases of FMD upon ingestion of flavanol-containing cocoa continued to be manifest throughout the study. Treatment was well tolerated without evidence of tachyphylaxia. Endothelium-independent responses, blood pressure, heart rate, and glycemic control were unaffected. CONCLUSIONS Diets rich in flavanols reverse vascular dysfunction in diabetes, highlighting therapeutic potentials in cardiovascular disease.


Journal of Nutrition | 2000

Epicatechin in Human Plasma: In Vivo Determination and Effect of Chocolate Consumption on Plasma Oxidation Status

Dietrich Rein; Silvina B. Lotito; Roberta R. Holt; Carl L. Keen; Harold H. Schmitz; Cesar G. Fraga

Diets that are rich in plant foods have been associated with a decreased risk for specific disease processes and certain chronic diseases. In addition to essential macronutrients and micronutrients, the flavonoids in a variety of plant foods may have health-enhancing properties. Chocolate is a food that is known to be rich in the flavan-3-ol epicatechin and procyanidin oligomers. However, the bioavailability and the biological effects of the chocolate flavonoids are poorly understood. To begin to address these issues, we developed a method based on HPLC coupled with electrochemical (coulometric) detection to determine the physiological levels of epicatechin, catechin and epicatechin dimers. This method allows for the determination of 20 pg (69 fmol) of epicatechin, which translates to plasma concentrations as low as 1 nmol/L. We next evaluated the absorption of epicatechin, from an 80-g semisweet chocolate (procyanidin-rich chocolate) bolus. By 2 h after ingestion, there was a 12-fold increase in plasma epicatechin, from 22 to 257 nmol/L (P < 0.01). Consistent with the antioxidant properties of epicatechin, within the same 2-h period, there was a significant increase of 31% in plasma total antioxidant capacity (P < 0.04) and a decrease of 40% in plasma 2-thiobarbituric acid reactive substances (P < 0.01). Plasma epicatechin and plasma antioxidant capacity approached baseline values by 6 h after ingestion. These results show that it is possible to determine basal levels of epicatechin in plasma. The data support the concept that the consumption of chocolate can result in significant increases in plasma epicatechin concentrations and decreases in plasma baseline oxidation products.


Journal of Nutrition | 2000

A Dose-Response Effect from Chocolate Consumption on Plasma Epicatechin and Oxidative Damage

Janice F. Wang; Derek D. Schramm; Roberta R. Holt; Jodi L. Ensunsa; Cesar G. Fraga; Harold H. Schmitz; Carl L. Keen

Evidence from epidemiological studies suggests that a diet high in plant foods and rich in polyphenols is inversely associated with a risk for cardiovascular and other chronic diseases. Chocolate, like red wine and green tea, is a polyphenol-rich food, primarily containing procyanidin polyphenols. These polyphenols are hypothesized to provide cardioprotective effects due to their ability to scavenge free radicals and inhibit lipid oxidation. Herein, we demonstrate that 2 h after the ingestion of a procyanidin-rich chocolate containing 5.3 mg total procyanidin/g, of which 1.3 mg/g was (-)-epicatechin (epicatechin), plasma levels of epicatechin increased 133 +/- 27, 258 +/- 29 and 355 +/- 49 nmol/L in individuals who consumed 27, 53 and 80 g of chocolate, respectively. That the rise in plasma epicatechin levels was functionally significant is suggested by observations of trends for dose-response increases in the plasma antioxidant capacity and decreases in plasma lipid oxidation products. The above data support the theories that in healthy adults, 1) a positive relationship exists between procyanidin consumption and plasma procyanidin concentration and 2) the rise in plasma epicatechin contributes to the ability of plasma to scavenge free radicals and to inhibit lipid peroxidation.


Diabetes Care | 1991

Copper, Zinc, Manganese, and Magnesium Status and Complications of Diabetes Mellitus

Robert M. Walter; Janet Y. Uriu-Hare; Katherine L. Olin; Michelle H. Oster; Bradley D. Anawalt; James W. Critchfield; Carl L. Keen

Objective To evaluate copper, zinc, manganese, magnesium, and other indices of peroxidative status in diabetic and nondiabetic human subjects. Research Design and Methods Convenience sample of 57 insulin-dependent or non-insulin-dependent diabetic subjects recruited from the diabetes clinic of the University of California, Davis, Medical Center and 28 nondiabetic subjects recruited from the staffs of the Departments of Internal Medicine and Nutrition. Individuals conducting laboratory analyses were blind to subject group. A fasting blood sample was collected from all subjects and appropriately processed for future analyses. A 24-h urine collection was obtained in a subset of subjects. Results Hyperzincuria and hypermagnesuria were evident in diabetic subjects compared with control subjects. There were no differences in plasma magnesium or whole-blood manganese between groups. Plasma copper was higher and plasma zinc was lower in diabetic than in control subjects. When data were viewed with respect to specific diabetes-associated complications, diabetic subjects with retinopathy, hypertension, or microvascular disease had higher plasma copper concentrations compared with both diabetic subjects without complications and with control subjects. There were no significant differences between control and diabetic subjects in erythrocyte copper-zinc superoxide dismutase activity or whole-blood glutathione peroxidase or glutathione reductase activities. Plasma peroxide concentrations were higher in diabetic than control subjects. Conclusions Diabetes can alter copper, zinc, magnesium, and lipid peroxidation status. Perturbations in mineral metabolism are more pronounced in diabetic populations with specific complications. It is not known whether differences in trace element status are a consequence of diabetes, or alternatively, whether they contribute to the expression of the disease.


Clinical & Developmental Immunology | 2005

Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface?

Alejandra G. Erlejman; Sandra V. Verstraeten; Carl L. Keen; Cesar G. Fraga

Flavonoids can exert beneficial health effects through multiple mechanisms. In this paper, we address the important, although not fully understood, capacity of flavonoids to interact with cell membranes. The interactions of polyphenols with bilayers include: (a) the partition of the more non-polar compounds in the hydrophobic interior of the membrane, and (b) the formation of hydrogen bonds between the polar head groups of lipids and the more hydrophilic flavonoids at the membrane interface. The consequences of these interactions are discussed. The induction of changes in membrane physical properties can affect the rates of membrane lipid and protein oxidation. The partition of certain flavonoids in the hydrophobic core can result in a chain breaking antioxidant activity. We suggest that interactions of polyphenols at the surface of bilayers through hydrogen bonding, can act to reduce the access of deleterious molecules (i.e. oxidants), thus protecting the structure and function of membranes.


The American Journal of Clinical Nutrition | 2005

Cocoa antioxidants and cardiovascular health

Carl L. Keen; Roberta R. Holt; Cesar G. Fraga; Harold H. Schmitz

An increasing body of epidemiologic evidence supports the concept that diets rich in fruits and vegetables can promote health and attenuate, or delay, the onset of various diseases. Epidemiologic data support the idea that these health benefits are causally linked to the consumption of certain flavonoids present in fruit and vegetables. In the context of cardiovascular health, a particular group of flavonoids, namely, the flavan-3-ols (flavanols), has received attention. Flavanol-rich, plant-derived foods and beverages include wine, tea, and various fruits and berries, as well as cocoa and cocoa products. Numerous dietary intervention studies in humans and animals indicate that flavanol-rich foods and beverages might exert cardioprotective effects with respect to vascular function and platelet reactivity. This review discusses the bioactivity of flavanols in the context of cardiovascular health, with respect to their bioavailability, their antioxidant properties, and their vascular effects.

Collaboration


Dive into the Carl L. Keen's collaboration.

Top Co-Authors

Avatar

Bo Lönnerdal

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mari S. Golub

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge