Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl M. Anderson is active.

Publication


Featured researches published by Carl M. Anderson.


Neuroscience & Biobehavioral Reviews | 2003

THE NEUROBIOLOGICAL CONSEQUENCES OF EARLY STRESS AND CHILDHOOD MALTREATMENT

Martin H. Teicher; Susan L. Andersen; Ann Polcari; Carl M. Anderson; Carryl P. Navalta; Dennis M. Kim

Early severe stress and maltreatment produces a cascade of neurobiological events that have the potential to cause enduring changes in brain development. These changes occur on multiple levels, from neurohumoral (especially the hypothalamic-pituitary-adrenal [HPA] axis) to structural and functional. The major structural consequences of early stress include reduced size of the mid-portions of the corpus callosum and attenuated development of the left neocortex, hippocampus, and amygdala. Major functional consequences include increased electrical irritability in limbic structures and reduced functional activity of the cerebellar vermis. There are also gender differences in vulnerability and functional consequences. The neurobiological sequelae of early stress and maltreatment may play a significant role in the emergence of psychiatric disorders during development.


Psychiatric Clinics of North America | 2002

Developmental neurobiology of childhood stress and trauma.

Martin H. Teicher; Susan L. Andersen; Ann Polcari; Carl M. Anderson; Carryl P. Navalta

Severe early stress and maltreatment produces a cascade of events that have the potential to alter brain development. The first stage of the cascade involves the stress-induced programming of the glucocorticoid, noradrenergic, and vasopressin-oxytocin stress response systems to augment stress responses. These neurohumors then produce effects on neurogenesis, synaptic overproduction and pruning, and myelination during specific sensitive periods. Major consequences include reduced size of the mid-portions of the corpus callosum; attenuated development of the left neocortex, hippocampus, and amygdala along with abnormal frontotemporal electrical activity; and reduced functional activity of the cerebellar vermis. These alterations, in turn, provide the neurobiological framework through which early abuse increases the risk of developing post-traumatic stress disorder (PTSD), depression, symptoms of attention-deficit/hyperactivity, borderline personality disorder, dissociative identity disorder, and substance abuse.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum

Martin H. Teicher; Carl M. Anderson; Ann Polcari

Childhood maltreatment or abuse is a major risk factor for mood, anxiety, substance abuse, psychotic, and personality disorders, and it is associated with reduced adult hippocampal volume, particularly on the left side. Translational studies show that the key consequences of stress exposure on the hippocampus are suppression of neurogenesis in the dentate gyrus (DG) and dendritic remodeling in the cornu ammonis (CA), particularly the CA3 subfield. The hypothesis that maltreatment is associated with volume reductions in 3-T MRI subfields containing the DG and CA3 was assessed and made practical by newly released automatic segmentation routines for FreeSurfer. The sample consisted of 193 unmedicated right-handed subjects (38% male, 21.9 ± 2.1 y of age) selected from the community. Maltreatment was quantified using the Adverse Childhood Experience study and Childhood Trauma Questionnaire scores. The strongest associations between maltreatment and volume were observed in the left CA2-CA3 and CA4-DG subfields, and were not mediated by histories of major depression or posttraumatic stress disorder. Comparing subjects with high vs. low scores on the Childhood Trauma Questionnaire and Adverse Childhood Experience study showed an average volume reduction of 6.3% and 6.1% in the left CA2-CA3 and CA4-DG, respectively. Volume reductions in the CA1 and fimbria were 44% and 60% smaller than in the CA2-CA3. Interestingly, maltreatment was associated with 4.2% and 4.3% reductions in the left presubiculum and subiculum, respectively. These findings support the hypothesis that exposure to early stress in humans, as in other animals, affects hippocampal subfield development.


Nature Medicine | 2000

Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry

Martin H. Teicher; Carl M. Anderson; Ann Polcari; Carol A. Glod; Luis C. Maas; Perry F. Renshaw

Attention-deficit/hyperactivity disorder is a highly heritable and prevalent neuropsychiatric disorder estimated to affect 6% of school-age children. Its clinical hallmarks are inattention, hyperactivity and impulsivity, which often respond substantially to treatment with methylphenidate or dextroamphetamine. Etiological theories suggest a deficit in corticostriatal circuits, particularly those components modulated by dopamine. We developed a new functional magnetic resonance imaging procedure (T2 relaxometry) to indirectly assess blood volume in the striatum (caudate and putamen) of boys 6–12 years of age in steady-state conditions. Boys with attention-deficit/hyperactivity disorder had higher T2 relaxation time measures in the putamen bilaterally than healthy control subjects. Relaxation times strongly correlated with the childs capacity to sit still and his accuracy in accomplishing a computerized attention task. Daily treatment with methylphenidate significantly changed the T2 relaxation times in the putamen of children with attention-deficit/hyperactivity disorder, although the magnitude and direction of the effect was strongly dependent on the childs unmedicated activity state. There was a similar but nonsignificant trend in the right caudate. T2 relaxation time measures in thalamus did not differ significantly between groups, and were not affected by methylphenidate. Attention-deficit/hyperactivity disorder symptoms may be closely tied to functional abnormalities in the putamen, which is mainly involved in the regulation of motor behavior.


Nature Reviews Neuroscience | 2016

The effects of childhood maltreatment on brain structure, function and connectivity

Martin H. Teicher; Jacqueline A. Samson; Carl M. Anderson; Kyoko Ohashi

Maltreatment-related childhood adversity is the leading preventable risk factor for mental illness and substance abuse. Although the association between maltreatment and psychopathology is compelling, there is a pressing need to understand how maltreatment increases the risk of psychiatric disorders. Emerging evidence suggests that maltreatment alters trajectories of brain development to affect sensory systems, network architecture and circuits involved in threat detection, emotional regulation and reward anticipation. This Review explores whether these alterations reflect toxic effects of early-life stress or potentially adaptive modifications, the relationship between psychopathology and brain changes, and the distinction between resilience, susceptibility and compensation.


Psychoneuroendocrinology | 2002

Abnormal T2 relaxation time in the cerebellar vermis of adults sexually abused in childhood: potential role of the vermis in stress-enhanced risk for drug abuse

Carl M. Anderson; Martin H. Teicher; Ann Polcari; Perry F. Renshaw

Recent studies suggest that childhood sexual abuse (CSA) elicits a cascade of neurohumoral events that affect brain development and is also a risk factor for the later development of substance abuse. We hypothesize that the cerebellar vermis may be a key region linking these observations. The vermis has a protracted ontogeny and a high density of glucocorticoid receptors, rendering it highly susceptible to early stress. The vermis modulates dopamine turnover in the accumbens and receives direct dopamine input through fibers with dopamine transporters. To test this hypothesis, steady-state functional magnetic resonance imaging (fMRI) (T2 relaxometry) was performed to assess resting blood flow in the vermis of 24 young adults (18-22 years) selected by screening from a large community sample. Eight subjects had a history of repeated CSA but were unmedicated and not under psychiatric care. Sixteen subjects were age-matched controls who had no personal or family history of Axis I psychiatric disorders. All subjects were screened to exclude known abnormalities affecting brain development, and any history of drug or alcohol abuse. CSA subjects had higher T2 relaxation time (T2-RT) than controls in the vermis but not in cerebral or cerebellar hemispheres. Vermal T2-RT correlated strongly with Limbic System Checklist (LSCL-33) ratings of temporal lobe epilepsy (TLE)-like symptomatology. From 537 prescreened young adults we found that their frequency of substance use was associated with a monotonic increase in LSCL-33 ratings and depression scores. Together these findings suggest that early trauma may interfere with the development of the vermis, and produce neuropsychiatric symptoms associated with drug use.


NeuroImage | 2014

Sensitive periods of amygdala development: the role of maltreatment in preadolescence.

Pia Pechtel; Karlen Lyons-Ruth; Carl M. Anderson; Martin H. Teicher

The amygdala is vulnerable to stress-dependent disruptions in neural development. Animal models have shown that stress increases dendritic arborization leading to larger amygdala volumes. Human studies of early stress and amygdala volume, however, remain inconclusive. This study compared amygdala volume in adults with childhood maltreatment to that in healthy controls. Eighteen participants from a longitudinal cohort and 33 cross-sectional controls (17 M/34 F, 25.5±3.1 years) completed a structural magnetic resonance imagining scan and the Maltreatment and Abuse Chronology of Exposure scale. Random forest regression with conditional trees was used to assess relative importance of exposure to adversity at each age on amygdala, thalamic or caudate volume. Severity of exposure to adversity across age accounted for 27% of the variance in right amygdala volume. Peak sensitivity occurred at 10-11 years of age, and importance of exposure at this time was highly significant based on permutation tests (p=0.003). The regression model showed that exposure during this sensitive period resulted in steep dose-response function with maximal response to even modest levels of exposure. Subjects in the highest exposure quartile (MACE-11, range=11-54) had a 9.1% greater right amygdala volume than subjects in the lowest exposure quartile (MACE-11, ≤3.5). No associations emerged between age of exposure and volume of the left amygdala or bilateral caudate or thalamus. Severity of adversity experienced at age 10-11 contributed to larger right but not left amygdala volume in adulthood. Results provide preliminary evidence that the amygdala may have a developmental sensitive period in preadolescence.


Neuropsychopharmacology | 2006

Cerebellar Vermis Involvement in Cocaine-Related Behaviors

Carl M. Anderson; Luis C. Maas; Blaise deB. Frederick; Jacob Bendor; Thomas J. Spencer; Eli Livni; Scott E. Lukas; Alan J. Fischman; Bertha K. Madras; Perry F. Renshaw; Marc J. Kaufman

Although the cerebellum is increasingly being viewed as a brain area involved in cognition, it typically is excluded from circuitry considered to mediate stimulant-associated behaviors since it is low in dopamine. Yet, the primate cerebellar vermis (lobules II–III and VIII–IX) has been reported to contain axonal dopamine transporter immunoreactivity (DAT-IR). We hypothesized that DAT-IR-containing vermis areas would be activated in cocaine abusers by cocaine-related cues and, in healthy humans, would accumulate DAT-selective ligands. We used BOLD fMRI to determine whether cocaine-related cues activated DAT-IR-enriched vermis regions in cocaine abusers and positron emission tomography imaging of healthy humans to determine whether the DAT-selective ligand [11C]altropane accumulated in those vermis regions. Cocaine-related cues selectively induced BOLD activation in lobules II–III and VIII–IX in cocaine users, and, at early time points after ligand administration, we found appreciable [11C]altropane accumulation in lobules VIII–IX, possibly indicating DAT presence in this region. These data suggest that parts of cerebellar vermis mediate cocaines persisting and acute effects. In light of prior findings illustrating vermis connections to midbrain dopamine cell body regions, established roles for the vermis as a locus of sensorimotor integration and motor planning, and findings of increased vermis activation in substance abusers during reward-related and other cognitive tasks, we propose that the vermis be considered one of the structures involved in cocaine- and other incentive-related behaviors.


PLOS ONE | 2012

Reduced Visual Cortex Gray Matter Volume and Thickness in Young Adults Who Witnessed Domestic Violence during Childhood

Akemi Tomoda; Ann Polcari; Carl M. Anderson; Martin H. Teicher

Exposure to interparental violence is associated with negative outcomes, such as depression, post-traumatic stress disorder and reduced cognitive abilities. However, little is known about the potential effects of witnessing domestic violence during childhood on gray matter volume (GMV) or cortical thickness. High-resolution 3.0 T volumetric scans (Siemens Trio Scanner) were obtained on 52 subjects (18–25 years) including 22 (6 males/16 females) with a history of visually witnessing episodes of domestic violence, and 30 (8 males/22 females) unexposed control subjects, with neither a current nor past DSM-IV Axis I or II disorder. Potential confounding effects of age, gender, level of parental verbal aggression, parental education, financial stress, full scale IQ, and total GMV, or average thickness were modeled using voxel based morphometry and FreeSurfer. Witnessing domestic violence subjects had a 6.1% GMV reduction in the right lingual gyrus (BA18) (P = 0.029, False Discovery Rate corrected peak level). Thickness in this region was also reduced, as was thickness in V2 bilaterally and left occipital pole. Theses regions were maximally sensitive to exposure to witnessing domestic violence between 11–13 years of age. Regional reductions in GMV and thickness were observed in both susceptible and resilient witnessing domestic violence subjects. Results in subjects witnessing domestic violence were similar to previously reported results in subjects with childhood sexual abuse, as the primary region affected was visual cortex. Brain regions that process and convey the adverse sensory input of the abuse may be specifically modified by this experience, particularly in subjects exposed to a single type of maltreatment. Exposure to multiple types of maltreatment is more commonly associated with morphological alterations in corticolimbic regions. These findings fit with preclinical studies showing that visual cortex is a highly plastic structure.


Journal of Neuroscience Methods | 2006

Emotional task-dependent low-frequency fluctuations and methylphenidate: Wavelet scaling analysis of 1/f-type fluctuations in fMRI of the cerebellar vermis

Carl M. Anderson; Steven B. Lowen; Perry F. Renshaw

UNLABELLED Ion channel currents, neural firing patterns, and brain BOLD signals display 1/f-type fluctuations or fractal properties in time. By design, fMRI methods attempt to minimize the contribution of variance from low-frequency physiological 1/f-noise. New fMRI methods are described to visualize and measure 1/f-type BOLD fluctuations in volunteers recalling affectively neutral or emotional memories or meditating (i.e., attending to breathing) then retrospectively rating emotional content. A wavelet scaling exponent (alpha) was used to characterize signals from 0.015625 to 0.5Hz in cerebellar lobules VIII to X of the vermis (posterior inferior vermis; PIV), a region coordinating balance, eye tracking, locomotion, and vascular tone, and a possible site of pathology in attention deficit hyperactivity disorder (ADHD). RESULTS Changes in alpha and emotional measures were correlated in PIV voxels (r = 0.622, d.f .= 14, P < 0.0005), but not other regions examined. In contrast, conventional means and standard deviations of PIV voxels were unchanged. Methylphenidate, shown to decrease slow oscillations in rodent basal ganglia [Ruskin DN, Bergstrom DA, Shenker A, Freeman LE, Baek D, Walters JR. Drugs used in the treatment of attention-deficit/hyperactivity disorder affect postsynaptic firing rate and oscillation without preferential dopamine autoreceptor action. Biol Psychiatry 2001;49:340-50.], abolished task-dependent alpha changes in the PIV of an adult with ADHD. Wavelet analysis of long BOLD time series appears well suited to fractal physiology and studies of pharmacologically modulated cerebellar-thalamic-cortical function in ADHD or other psychiatric disorders.

Collaboration


Dive into the Carl M. Anderson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge