Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl O. Ostberg is active.

Publication


Featured researches published by Carl O. Ostberg.


Molecular Ecology | 2001

Genetic characterization of hybridization and introgression between anadromous rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki)

William P. Young; Carl O. Ostberg; Paul Keim; Gary H. Thorgaard

Interspecific hybridization represents a dynamic evolutionary phenomenon and major conservation problem in salmonid fishes. In this study we used amplified fragment length polymorphisms (AFLP) and mitochondrial DNA (mtDNA) markers to describe the extent and characterize the pattern of hybridization and introgression between coastal rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Hybrid individuals were initially identified using principle coordinate analysis of 133 polymorphic AFLP markers. Subsequent analysis using 23 diagnostic AFLP markers revealed the presence of F1, rainbow trout backcross, cutthroat trout backcross and later‐generation hybrids. mtDNA analysis demonstrated equal numbers of F1 hybrids with rainbow and cutthroat trout mtDNA indicating reciprocal mating of the parental types. In contrast, rainbow and cutthroat trout backcross hybrids always exhibited the mtDNA from the recurrent parent, indicating a male hybrid mating with a pure female. This study illustrates the usefulness of the AFLP technique for generating large numbers of species diagnostic markers. The pattern of hybridization raises many questions concerning the existence and action of reproductive isolating mechanisms between these two species. Our findings are consistent with the hypothesis that introgression between anadromous populations of coastal rainbow and coastal cutthroat trout is limited by an environment‐dependent reduction in hybrid fitness.


Molecular Ecology | 2004

Spatial partitioning and asymmetric hybridization among sympatric coastal steelhead trout (Oncorhynchus mykiss irideus), coastal cutthroat trout (O. clarki clarki) and interspecific hybrids

Carl O. Ostberg; Stacey L. Slatton; Russell J. Rodriguez

Hybridization between sympatric species provides unique opportunities to examine the contrast between mechanisms that promote hybridization and maintain species integrity. We surveyed hybridization between sympatric coastal steelhead (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki) from two streams in Washington State, Olsen Creek (256 individuals sampled) and Jansen Creek (431 individuals sampled), over a 3‐year period. We applied 11 O. mykiss‐specific nuclear markers, 11 O. c. clarki‐specific nuclear markers and a mitochondrial DNA marker to assess spatial partitioning among species and hybrids and determine the directionality of hybridization. F1 and post‐F1 hybrids, respectively, composed an average of 1.2% and 33.6% of the population sampled in Jansen Creek, and 5.9% and 30.4% of the population sampled in Olsen Creek. A modest level of habitat partitioning among species and hybrids was detected. Mitochondrial DNA analysis indicated that all F1 hybrids (15 from Olsen Creek and five from Jansen Creek) arose from matings between steelhead females and cutthroat males implicating a sneak spawning behaviour by cutthroat males. First‐generation cutthroat backcrosses contained O. c. clarki mtDNA more often than expected suggesting natural selection against F1 hybrids. More hybrids were backcrossed toward cutthroat than steelhead and our results indicate recurrent hybridization within these creeks. Age analysis demonstrated that hybrids were between 1 and 4 years old. These results suggest that within sympatric salmonid hybrid zones, exogenous processes (environmentally dependent factors) help to maintain the distinction between parental types through reduced fitness of hybrids within parental environments while divergent natural selection promotes parental types through distinct adaptive advantages of parental phenotypes.


Transactions of The American Fisheries Society | 2006

Hybridization and Cytonuclear Associations among Native Westslope Cutthroat Trout, Introduced Rainbow Trout, and Their Hybrids within the Stehekin River Drainage, North Cascades National Park

Carl O. Ostberg; Rusty J. Rodriguez

Abstract Historic introductions of nonnative rainbow trout Oncorhynchus mykiss into the native habitats of cutthroat trout O. clarkii have impacted cutthroat trout populations through introgressive hybridization, creating challenges and concerns for cutthroat trout conservation. We examined the effects of rainbow trout introductions on the native westslope cutthroat trout O. c. lewisii within the Stehekin River drainage, North Cascades National Park, Washington, by analyzing 1,763 salmonid DNA samples from 18 locations with nine diagnostic nuclear DNA markers and one diagnostic mitochondrial DNA (mtDNA) marker. Pure westslope cutthroat trout populations only occurred above upstream migration barriers in the Stehekin River and Park Creek. Two categories of rainbow trout admixture were observed: (1) less than 10% within the Stehekin River drainage above the Bridge Creek confluence and the middle and upper Bridge Creek drainage and (2) greater than 30% within the Stehekin River below the Bridge Creek conflue...


BMC Genomics | 2013

Chromosome rearrangements, recombination suppression, and limited segregation distortion in hybrids between Yellowstone cutthroat trout (Oncorhynchus clarkii bouvieri) and rainbow trout (O. mykiss)

Carl O. Ostberg; Lorenz Hauser; Victoria L. Pritchard; John Carlos Garza; Kerry A. Naish

BackgroundIntrogressive hybridization is an important evolutionary process that can lead to the creation of novel genome structures and thus potentially new genetic variation for selection to act upon. On the other hand, hybridization with introduced species can threaten native species, such as cutthroat trout (Oncorhynchus clarkii) following the introduction of rainbow trout (O. mykiss). Neither the evolutionary consequences nor conservation implications of rainbow trout introgression in cutthroat trout is well understood. Therefore, we generated a genetic linkage map for rainbow-Yellowstone cutthroat trout (O. clarkii bouvieri) hybrids to evaluate genome processes that may help explain how introgression affects hybrid genome evolution.ResultsThe hybrid map closely aligned with the rainbow trout map (a cutthroat trout map does not exist), sharing all but one linkage group. This linkage group (RYHyb20) represented a fusion between an acrocentric (Omy28) and a metacentric chromosome (Omy20) in rainbow trout. Additional mapping in Yellowstone cutthroat trout indicated the two rainbow trout homologues were fused in the Yellowstone genome. Variation in the number of hybrid linkage groups (28 or 29) likely depended on a Robertsonian rearrangement polymorphism within the rainbow trout stock. Comparison between the female-merged F1 map and a female consensus rainbow trout map revealed that introgression suppressed recombination across large genomic regions in 5 hybrid linkage groups. Two of these linkage groups (RYHyb20 and RYHyb25_29) contained confirmed chromosome rearrangements between rainbow and Yellowstone cutthroat trout indicating that rearrangements may suppress recombination. The frequency of allelic and genotypic segregation distortion varied among parents and families, suggesting few incompatibilities exist between rainbow and Yellowstone cutthroat trout genomes.ConclusionsChromosome rearrangements suppressed recombination in the hybrids. This result supports several previous findings demonstrating that recombination suppression restricts gene flow between chromosomes that differ by arrangement. Conservation of synteny and map order between the hybrid and rainbow trout maps and minimal segregation distortion in the hybrids suggest rainbow and Yellowstone cutthroat trout genomes freely introgress across chromosomes with similar arrangement. Taken together, these results suggest that rearrangements impede introgression. Recombination suppression across rearrangements could enable large portions of non-recombined chromosomes to persist within admixed populations.


FEBS Letters | 1995

Fibronectin attachment is permissive for IL-1 mediated gene regulation

Carl O. Ostberg; Ping Zhu; Thomas N. Wight; Eva E. Qwarnstrom

This study examines the effect of cell‐matrix interaction on IL‐1 induced gene regulation. In fibroblasts and smooth muscle cells attached to fibronectin, IL‐1 caused a pronounced reduction in proteoglycan synthesis, while no reduction occurred in cells plated on bare plastic. Further, fibronectin attachment was permissive for IL‐1 mediated suppression of both versican and collagen mRNA levels, initially noted after 4–6 h of IL‐1 incubation. Attachment to vitronectin was less potent in influencing regulation, and collagen had no effect, suggesting specificity of the matrix modulation of the IL‐1 induced response. Similar fibronectin induced dependence was demonstrated for IL‐1 regulation of IL‐6 gene expression, supporting the notion of a general effect of fibronectin receptor engagement on IL‐1 induced signal transduction.


Copeia | 1999

Geographic distribution of chromosome and microsatellite DNA polymorphisms in Oncorhynchus mykiss native to western Washington

Carl O. Ostberg; Gary H. Thorgaard

Chromosome studies of native populations of Oncorhynchus mykiss (steelhead and rainbow trout) in western Washington and southern British Columbia revealed the presence of two evolutionarily distinct chromosome lineages. Populations between, and including, the Elwha River, Washington, and Chilliwack River, British Columbia, contained 2n = 60 chromosomes. Populations on the central Washington coast contained 2n = 58 chromosomes. The north Washington coast and western Strait of Juan de Fuca contained individuals with 58, 59, or 60 chromosomes, suggesting this is a transition zone between 58 and 60 chromosome groups. The differences in chromosomal structure between 2n = 58 and 2n = 60 groups are presumably a Robertsonian rearrangement and an inversion. Alelic variation at three microsatellite loci (One ,u6, One u11 and Omy 77) also was examined, and no significant variation was detected among the 58 and 60 chromosome races. A hypothesis is presented concerning the origin of the 60 chromosome lineage.


Transactions of The American Fisheries Society | 2009

Evolutionary Relationships among Sympatric Life History Forms of Dolly Varden Inhabiting the Landlocked Kronotsky Lake, Kamchatka, and a Neighboring Anadromous Population

Carl O. Ostberg; S. D. Pavlov; Lorenz Hauser

Abstract We investigated the evolutionary relationships among five sympatric morphs of Dolly Varden Salvelinus malma (white, Schmidti, longhead, river, and dwarf) inhabiting landlocked Kronotsky Lake on the Kamchatka Peninsula, Russia, and an anadromous population below the barrier waterfall on the outflowing Kronotsky River. Morphological analyses indicated phenotypic differentiation corresponding to preferred habitat, the longhead (a limnetic piscivorous morph) having a fusiform body, long jaw, and short fins and the Schmidti (a benthic morph) having a robust body, small jaw, and long fins. Analysis of molecular variance among the Kronotsky Lake morphs indicated that contemporary gene flow is restricted both among morphs within locations and among locations within morphs. Gene flow from Kronotsky Lake into the anadromous population also appears to be restricted. Our findings indicate that there are two divergent evolutionary lineages, one consisting of the white, Schmidti, river, and dwarf morphs and th...


Transactions of The American Fisheries Society | 2011

Growth, Morphology, and Developmental Instability of Rainbow Trout, Yellowstone Cutthroat Trout, and Four Hybrid Generations

Carl O. Ostberg; Jeffrey J. Duda; John H. Graham; S. Zhang; K. P. Haywood; B. Miller; T. L. Lerud

Abstract Hybridization of cutthroat trout Oncorhynchus clarkii with nonindigenous rainbow trout O. mykiss contributes to the decline of cutthroat trout subspecies throughout their native range. Introgression by rainbow trout can swamp the gene pools of cutthroat trout populations, especially if there is little selection against hybrids. We used rainbow trout, Yellowstone cutthroat trout O. clarkii bouvieri, and rainbow trout × Yellowstone cutthroat trout F1 hybrids as parents to construct seven different line crosses: F1 hybrids (both reciprocal crosses), F2 hybrids, first-generation backcrosses (both rainbow trout and Yellowstone cutthroat trout), and both parental taxa. We compared growth, morphology, and developmental instability among these seven crosses reared at two different temperatures. Growth was related to the proportion of rainbow trout genome present within the crosses. Meristic traits were influenced by maternal, additive, dominant, overdominant, and (probably) epistatic genetic effects. Dev...


Northwest Science | 2012

Temporal Genetic Monitoring of Hybridization between Native Westslope Cutthroat Trout and Introduced Rainbow Trout in the Stehekin River, Washington

Carl O. Ostberg; Dorothy M. Chase

Abstract Introgressive hybridization with introduced rainbow trout (RBT) (Oncorhynchus mykiss) has led to the loss of native cutthroat trout species (O. clarkii) throughout their range, creating conservation concerns. Monitoring temporal hybridization trends provides resource managers with a tool for determining population status and information for establishing conservation goals for native cutthroat trout. In this study, we re-sampled six locations in 2010 within the Stehekin River watershed, North Cascades National Park, which were originally sampled between 1999 and 2003. We used genetic markers to monitor changes in hybridization levels between sampling periods in the native westslope cutthroat trout (WCT) (O. c. lewisi) stemming from past RBT introductions. Additionally, two new locations from the lower Stehekin drainage were added to the baseline data. We found that the frequency of WCT, RBT, and their hybrids was not significantly different between monitoring periods, but that RBT allele frequencies decreased in two locations and increased in one location. We also found a consistent, substantial reduction in the frequency of RBT alleles over the monitoring period in the Stehekin River upstream of Bridge Creek (SR3) compared to the Stehekin River downstream of Bridge Creek (SR1 -2) and within lower Bridge Creek (BR1) although these three locations are confined to a small geographic area (approximately 5 km). Ecological and/or evolutionary processes likely restrict the dispersal of RBT alleles in the Stehekin River upstream of Bridge Creek.


PLOS ONE | 2015

Hybridization between Yellowstone Cutthroat Trout and Rainbow Trout Alters the Expression of Muscle Growth-Related Genes and Their Relationships with Growth Patterns.

Carl O. Ostberg; Dorothy M. Chase; Lorenz Hauser

Hybridization creates novel gene combinations that may generate important evolutionary novelty, but may also reduce existing adaptation by interrupting inherent biological processes, such as genotype-environment interactions. Hybridization often causes substantial change in patterns of gene expression, which, in turn, may cause phenotypic change. Rainbow trout (Oncorhynchus mykiss) and cutthroat trout (O. clarkii) produce viable hybrids in the wild, and introgressive hybridization with introduced rainbow trout is a major conservation concern for native cutthroat trout. The two species differ in body shape, which is likely an evolutionary adaptation to their native environments, and their hybrids tend to show intermediate morphology. The characterization of gene expression patterns may provide insights on the genetic basis of hybrid and parental morphologies, as well as on the ecological performance of hybrids in the wild. Here, we evaluated the expression of eight growth-related genes (MSTN-1a, MSTN-1b, MyoD1a, MyoD1b, MRF-4, IGF-1, IGF-2, and CAST-L) and the relationship of these genes with growth traits (length, weight, and condition factor) in six line crosses: both parental species, both reciprocal F1 hybrids, and both first-generation backcrosses (F1 x rainbow trout and F1 x cutthroat trout). Four of these genes were differentially expressed among rainbow, cutthroat, and their hybrids. Transcript abundance was significantly correlated with growth traits across the parent species, but not across hybrids. Our findings suggest that rainbow and cutthroat trout exhibit differences in muscle growth regulation, that transcriptional networks may be modified by hybridization, and that hybridization disrupts intrinsic relationships between gene expression and growth patterns that may be functionally important for phenotypic adaptations.

Collaboration


Dive into the Carl O. Ostberg's collaboration.

Top Co-Authors

Avatar

Marshal S. Hoy

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Dorothy M. Chase

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Gary H. Thorgaard

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Lorenz Hauser

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Russell J. Rodriguez

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Summer M. Burdick

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla M. Conway

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Diane G. Elliott

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Thomas N. Wight

Benaroya Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge