Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl P. Bergstrom is active.

Publication


Featured researches published by Carl P. Bergstrom.


ACS Medicinal Chemistry Letters | 2010

Discovery and Evaluation of BMS-708163, a Potent, Selective and Orally Bioavailable γ-Secretase Inhibitor

Kevin W. Gillman; John E. Starrett; Michael F. Parker; Kai Xie; Joanne J. Bronson; Kate E. McElhone; Carl P. Bergstrom; Robert A. Mate; Richard A. Williams; Jere E. Meredith; Catherine R. Burton; Donna M. Barten; Jeremy H. Toyn; Susan B. Roberts; Kimberley A. Lentz; John G. Houston; Robert Zaczek; Charles F. Albright; Carl P. Decicco; John E. Macor; Richard E. Olson

During the course of our research efforts to develop a potent and selective γ-secretase inhibitor for the treatment of Alzheimers disease, we investigated a series of carboxamide-substituted sulfonamides. Optimization based on potency, Notch/amyloid-β precursor protein selectivity, and brain efficacy after oral dosing led to the discovery of 4 (BMS-708163). Compound 4 is a potent inhibitor of γ-secretase (Aβ40 IC50 = 0.30 nM), demonstrating a 193-fold selectivity against Notch. Oral administration of 4 significantly reduced Aβ40 levels for sustained periods in brain, plasma, and cerebrospinal fluid in rats and dogs.


Journal of Biological Chemistry | 2008

The Amyloid-β Rise and γ-Secretase Inhibitor Potency Depend on the Level of Substrate Expression

Catherine R. Burton; Jere E. Meredith; Donna M. Barten; Margi E. Goldstein; Carol M. Krause; Cathy J. Kieras; Lisa Sisk; Lawrence G. Iben; Craig Polson; Mark W. Thompson; Xu-Alan Lin; Jason A. Corsa; Tracey Fiedler; Maria Pierdomenico; Yang Cao; Arthur H. Roach; Joseph L. Cantone; Michael J. Ford; Dieter M. Drexler; Richard E. Olson; Michael G. Yang; Carl P. Bergstrom; Kate E. McElhone; Joanne J. Bronson; John E. Macor; Yuval Blat; Robert H. Grafstrom; Dietmar A. Seiffert; Robert Zaczek; Charles F. Albright

The amyloid-β (Aβ) peptide, which likely plays a key role in Alzheimer disease, is derived from the amyloid-β precursor protein (APP) through consecutive proteolytic cleavages by β-site APP-cleaving enzyme and γ-secretase. Unexpectedly γ-secretase inhibitors can increase the secretion of Aβ peptides under some circumstances. This “Aβ rise” phenomenon, the same inhibitor causing an increase in Aβ at low concentrations but inhibition at higher concentrations, has been widely observed. Here we show that the Aβ rise depends on the β-secretase-derived C-terminal fragment of APP (βCTF) or C99 levels with low levels causing rises. In contrast, the N-terminally truncated form of Aβ, known as “p3,” formed by α-secretase cleavage, did not exhibit a rise. In addition to the Aβ rise, low βCTF or C99 expression decreased γ-secretase inhibitor potency. This “potency shift” may be explained by the relatively high enzyme to substrate ratio under conditions of low substrate because increased concentrations of inhibitor would be necessary to affect substrate turnover. Consistent with this hypothesis, γ-secretase inhibitor radioligand occupancy studies showed that a high level of occupancy was correlated with inhibition of Aβ under conditions of low substrate expression. The Aβ rise was also observed in rat brain after dosing with the γ-secretase inhibitor BMS-299897. The Aβ rise and potency shift are therefore relevant factors in the development of γ-secretase inhibitors and can be evaluated using appropriate choices of animal and cell culture models. Hypothetical mechanisms for the Aβ rise, including the “incomplete processing” and endocytic models, are discussed.


Journal of Medicinal Chemistry | 2014

Discovery and Preclinical Characterization of the Cyclopropylindolobenzazepine BMS-791325, A Potent Allosteric Inhibitor of the Hepatitis C Virus NS5B Polymerase.

Robert G. Gentles; Min Ding; John A. Bender; Carl P. Bergstrom; Katharine A. Grant-Young; Piyasena Hewawasam; Thomas William Hudyma; Scott Martin; Andrew Nickel; Alicia Regueiro-Ren; Yong Tu; Zhong Yang; Kap-Sun Yeung; Xiaofan Zheng; Sam T. Chao; Jung-Hui Sun; Brett R. Beno; Daniel M. Camac; Mian Gao; Paul E. Morin; Steven Sheriff; Jeff Tredup; John Wan; Mark R. Witmer; Dianlin Xie; Umesh Hanumegowda; Jay O. Knipe; Kathy Mosure; Kenneth S. Santone; Dawn D. Parker

Described herein are structure-activity relationship studies that resulted in the optimization of the activity of members of a class of cyclopropyl-fused indolobenzazepine HCV NS5B polymerase inhibitors. Subsequent iterations of analogue design and syntheses successfully addressed off-target activities, most notably human pregnane X receptor (hPXR) transactivation, and led to significant improvements in the physicochemical properties of lead compounds. Those analogues exhibiting improved solubility and membrane permeability were shown to have notably enhanced pharmacokinetic profiles. Additionally, a series of alkyl bridged piperazine carboxamides was identified as being of particular interest, and from which the compound BMS-791325 (2) was found to have distinguishing antiviral, safety, and pharmacokinetic properties that resulted in its selection for clinical evaluation.


Bioorganic & Medicinal Chemistry Letters | 2011

Syntheses and initial evaluation of a series of indolo-fused heterocyclic inhibitors of the polymerase enzyme (NS5B) of the hepatitis C virus.

Xiaofan Zheng; Thomas W. Hudyma; Scott W. Martin; Carl P. Bergstrom; Min Ding; Feng He; Jeffrey L. Romine; Michael A. Poss; John F. Kadow; John Wan; Mark R. Witmer; Paul E. Morin; Daniel M. Camac; Steven Sheriff; Brett R. Beno; Karen Rigat; Ying-Kai Wang; Robert A. Fridell; Julie A. Lemm; Dike Qiu; Mengping Liu; Stacey Voss; Lenore Pelosi; Susan B. Roberts; Min Gao; Jay O. Knipe; Robert G. Gentles

Herein, we present initial SAR studies on a series of bridged 2-arylindole-based NS5B inhibitors. The introduction of bridging elements between the indole N1 and the ortho-position of the 2-aryl moiety resulted in conformationally constrained heterocycles that possess multiple additional vectors for further exploration. The binding mode and pharmacokinetic (PK) properties of select examples, including: 13-cyclohexyl-6-oxo-6,7-dihydro-5H-indolo[2,1-d][1,4]benzodiazepine-10-carboxylic acid (7) (IC(50)=0.07 μM, %F=18), are reported.


Bioorganic & Medicinal Chemistry Letters | 2008

Carbamate-appended N-alkylsulfonamides as inhibitors of γ-secretase

Carl P. Bergstrom; Charles P. Sloan; Wai-Yu Lau; David W. Smith; Ming Zheng; Steven Hansel; Craig Polson; Jason A. Corsa; Donna M. Barten; Kevin M. Felsenstein; Susan B. Roberts

The synthesis and gamma-secretase inhibition data for a series of carbamate-appended N-alkylsulfonamides are described. Carbamate 54 was found to significantly reduce brain Abeta in transgenic mice. 54 was also found to possess markedly improved brain levels in transgenic mice compared to previously disclosed 1 and 2.


Bioorganic & Medicinal Chemistry Letters | 2012

2-(N-Benzyl-N-phenylsulfonamido)alkyl amide derivatives as γ-secretase inhibitors.

Michael F. Parker; Donna M. Barten; Carl P. Bergstrom; Joanne J. Bronson; Jason A. Corsa; Michael F. Dee; Yonghua Gai; Valerie Guss; Mendi A. Higgins; Daniel J. Keavy; Alice Loo; Robert A. Mate; Larry R. Marcin; Katharine E. McElhone; Craig Polson; Susan B. Roberts; John E. Macor

A series of (N-benzyl-N-phenylsulfonamido)alkyl amides were developed from classic and parallel synthesis strategies. Compounds with good in vitro and in vivo γ-secretase activity were identified and described.


Archive | 2006

Inhibitors of HCV replication

Thomas W. Hudyma; Xiaofan Zheng; Feng He; Min Ding; Carl P. Bergstrom; Piyasena Hewawasam; Scott W. Martin; Robert G. Gentles


Bioorganic & Medicinal Chemistry Letters | 2007

Discovery of (S) -2 -( (S) -2 -(3,5 -difluorophenyl ) -2-hydroxyacetamido ) -N-( (S,Z) -3 -methyl -4 -oxo -4,5 -dihydro -3H-benzo[d|[1,2 ]diazepin -5 -yl )propanamide (BMS -433796 ) : A γ-secretase inhibitor with Aβ lowering activity in a transgenic mouse model of Alzheimer's disease

C.V.C. Prasad; Ming Zheng; Shikha Vig; Carl P. Bergstrom; David W. Smith; Qi Gao; Suresh Yeola; Craig Polson; Jason A. Corsa; Valerie Guss; Alice Loo; Jian Wang; Bogdan Sleczka; Charles Dangler; Barbara J. Robertson; Joseph P. Hendrick; Susan B. Roberts; Donna M. Barten


Archive | 2006

Indolobenzazepine hcv ns5b inhibitors

Carl P. Bergstrom; John A. Bender; Robert G. Gentles; Piyasena Hewawasam; Thomas W. Hudyma; John F. Kadow; Scott W. Martin; Alicia Regueiro-Ren; Kap-Sun Yeung; Yong Tu; Katharine A. Grant-Young; Xiaofan Zheng


Archive | 2002

.alpha.-(n-sulphonamido)acetamide derivatives as .beta.-amyloid inhibitors

Michael F. Parker; Katharine E. McElhone; Robert A. Mate; Joanne J. Bronson; Yonghua Gai; Carl P. Bergstrom; John E. Macor

Collaboration


Dive into the Carl P. Bergstrom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge