Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carl Senior is active.

Publication


Featured researches published by Carl Senior.


Neuropsychology (journal) | 2004

Recognition accuracy and response bias to happy and sad facial expressions in patients with major depression.

Simon Surguladze; Andrew W. Young; Carl Senior; Gildas Brébion; Michael J. Travis; Mary L. Phillips

Impaired facial expression recognition has been associated with features of major depression, which could underlie some of the difficulties in social interactions in these patients. Patients with major depressive disorder and age- and gender-matched healthy volunteers judged the emotion of 100 facial stimuli displaying different intensities of sadness and happiness and neutral expressions presented for short (100 ms) and long (2,000 ms) durations. Compared with healthy volunteers, depressed patients demonstrated subtle impairments in discrimination accuracy and a predominant bias away from the identification as happy of mildly happy expressions. The authors suggest that, in depressed patients, the inability to accurately identify subtle changes in facial expression displayed by others in social situations may underlie the impaired interpersonal functioning.


Cognitive Brain Research | 2000

Towards a functional neuroanatomy of self processing: effects of faces and words

Tilo Kircher; Carl Senior; Mary L. Phillips; Philip J. Benson; Edward T. Bullmore; Mick Brammer; Andrew Simmons; Steven Williams; Mathias Bartels; Anthony S. David

We studied the neural correlates of self vs. non-self judgements using functional magnetic resonance imaging (fMRI). Individually tailored faces and personality trait words were used as stimuli in three experiments (exp.). In the first two experiments, brain activation was measured while subjects viewed morphed versions of either their own (self face exp.) or their partners face (partners face exp.), alternating in blocks with presentation of an unknown face. In the self face exp. right limbic areas (hippocampal formation, insula, anterior cingulate), the right middle temporal lobe, left inferior parietal and left prefrontal regions showed signal changes. In the partners face exp., only the right insula was activated. In the third exp., subjects made decisions about psychological trait adjectives previously categorized as describing their own attributes. Activation was present in the precuneus, the left parietal lobe, left insula/inferior frontal gyrus and the left anterior cingulate. A reaction time advantage was present when subjects responded to self-relevant words. The main area with signal changes during self-reference processing, regardless of the type of stimulus, was the left fusiform gyrus. The self-relevant stimuli engaged to a differential extent long term and working memory, semantic and emotional processes. We suggest that regions activated by these stimuli are engaged in self-processing.


Cognition | 2001

Recognizing one's own face

Tilo Kircher; Carl Senior; Mary L. Phillips; Sophia Rabe-Hesketh; Philip J. Benson; Edward T. Bullmore; Mick Brammer; Andrew Simmons; Mathias Bartels; Anthony S. David

We report two studies of facial self-perception using individually tailored, standardized facial photographs of a group of volunteers and their partners. A computerized morphing procedure was used to merge each target face with an unknown control face. In the first set of experiments, a discrimination task revealed a delayed response time for the more extensively morphed self-face stimuli. In a second set of experiments, functional magnetic resonance imaging (fMRI) was used to measure brain activation while subjects viewed morphed versions of either their own or their partners face, alternating in blocks with presentation of an unknown face. When subjects viewed themselves (minus activation for viewing an unknown face), increased blood oxygenation was detected in right limbic (hippocampal formation, insula, anterior cingulate), left prefrontal cortex and superior temporal cortex. In the partner (versus unknown) experiment, only the right insula was activated. We suggest that a neural network involving the right hemisphere in conjunction with left-sided associative and executive regions underlies the process of visual self-recognition. Together, this combination produces the unique experience of self-awareness.


Psychiatry Research-neuroimaging | 2001

Depersonalization disorder: thinking without feeling

Mary L. Phillips; Nicholas Medford; Carl Senior; Edward T. Bullmore; John Suckling; Michael Brammer; C Andrew; Mauricio Sierra; Stephen R. Williams; Anthony S. David

Patients with depersonalization disorder (DP) experience a detachment from their own senses and surrounding events, as if they were outside observers. A particularly common symptom is emotional detachment from the surroundings. Using functional magnetic resonance imaging (fMRI), we compared neural responses to emotionally salient stimuli in DP patients, and in psychiatric and healthy control subjects. Six patients with DP, 10 with obsessive-compulsive disorder (OCD), and six volunteers were scanned whilst viewing standardized pictures of aversive and neutral scenes, matched for visual complexity. Pictures were then rated for emotional content. Both control groups rated aversive pictures as much more emotive, and demonstrated in response to these scenes significantly greater activation in regions important for disgust perception, the insula and occipito-temporal cortex, than DP patients (covarying for age, years of education and total extent of brain activation). In DP patients, aversive scenes activated the right ventral prefrontal cortex. The insula was activated only by neutral scenes in this group. Our findings indicate that a core phenomenon of depersonalization--absent subjective experience of emotion--is associated with reduced neural responses in emotion-sensitive regions, and increased responses in regions associated with emotion regulation.


Organization Science | 2011

PERSPECTIVE---Organizational Cognitive Neuroscience

Carl Senior; Nick Lee; Michael J.R. Butler

Organizational cognitive neuroscience (OCN) is the cognitive neuroscientific study of organizational behavior. OCN lets us start to understand the relationship between our organizational behavior and our brains and allows us to dissect specific social processes at the neurobiological level and apply a wider range of analysis to specific organizational research questions. The current paper examines the utility of OCN to address specific organizational research questions. A brief history and definition of the approach is first provided. Next, a discussion of the rationale for OCN as a research framework is provided, and then, finally, an overview of the range of techniques that the organizational researcher should (or should not) use is described.


Neuropsychologia | 2000

Cortical activity during rotational and linear transformations

J Barnes; Robert Howard; Carl Senior; Michael Brammer; Edward T. Bullmore; Andrew Simmons; Peter W. R. Woodruff; Anthony S. David

Neuroimaging studies of cortical activation during image transformation tasks have shown that mental rotation may rely on similar brain regions as those underlying visual perceptual mechanisms. The V5 complex, which is specialised for visual motion, is one region that has been implicated. We used functional magnetic resonance imaging (fMRI) to investigate rotational and linear transformation of stimuli. Areas of significant brain activation were identified for each of the primary mental transformation tasks in contrast to its own perceptual reference task which was cognitively matched in all respects except for the variable of interest. Analysis of group data for perception of rotational and linear motion showed activation in areas corresponding to V5 as defined in earlier studies. Both rotational and linear mental transformations activated Brodman Area (BA) 19 but did not activate V5. An area within the inferior temporal gyrus, representing an inferior satellite area of V5, was activated by both the rotational perception and rotational transformation tasks, but showed no activation in response to linear motion perception or transformation. The findings demonstrate the extent to which neural substrates for image transformation and perception overlap and are distinct as well as revealing functional specialisation within perception and transformation processing systems.


Learning, Media and Technology | 2009

Educating an iPod generation: undergraduate attitudes, experiences and understanding of vodcast and podcast use

Vanessa Parson; Peter Reddy; Jon Wood; Carl Senior

There is an increasing pressure on university staff to provide ever more information and resources to students. This study investigated student opinions on (audio) podcasts and (video) vodcasts and how well they met requirements and aided learning processes. Two experiments within the Aston University looked at student opinion on, and usage of, podcasts and vodcasts for a selection of their psychology lectures. Recordings were produced first using a hand‐held camcorder, and then using the in‐house media department. WebCT was used to distribute the podcasts and vodcasts, attitude questionnaires were then circulated at two time points. Overall students indicated that podcasts and vodcasts were a beneficial addition resource for learning, particularly when used in conjunction with lecturers’ slides and as a tool for revision/assessment. The online material translated into students having increased understanding of the material, which supplemented and enhanced their learning without being a substitute for traditional lectures. There is scope for the provision of portable media files to become standard practice within higher education; integrating distance and online learning with traditional approaches to improve teaching and learning.


Visual Cognition | 2002

Representational momentum and the brain: An investigation into the functional necessity of V5/MT

Carl Senior; Jamie Ward; Anthony S. David

The mental representation of objects can imply motion and momentum. This can be explored by investigating a distortion in recognition memory for pictures that depict objects “frozen” in mid-air, implying motion. This distortion is called representational momentum (RM). Recent functional neuroimaging studies have suggested that the V5/MT system (the area of the brain thought to be responsible for perceptual processing of motion) is involved in the mediation of RM. The results of these studies are reviewed here. However the presence of functional activity revealed in brain imaging studies does not mean that this part of the brain is necessary for a particular cognitive task. A greater degree of functional necessity can be inferred by disrupting function in that part of the brain. One way in which this can be done is with Transcranial Magnetic Stimulation (TMS, a method of temporarily suspending cortical activity). We extended the findings of the previous fMRI experiments by using TMS in conjunction with an RM paradigm. Repetitive magnetic stimulation to V5/MT during the so-called freeze-frame RM task resulted in an absence of the stereotypical distortion in recognition memory (compared to stimulation at the vertex) for approximately 60% of


Journal of Management | 2012

The Domain of Organizational Cognitive Neuroscience Theoretical and Empirical Challenges

Nick Lee; Carl Senior; Michael J.R. Butler

In this editorial, the authors respond to the 2011 article in the Journal of Management by Becker, Cropanzano, and Sanfey, titled “Organizational Neuroscience: Taking Organizational Theory Inside the Neural Black Box.” More specifically, the authors build on the ideas of Becker et al. first to clarify and extend their work and then to explore the critical philosophical issues involved in drawing inferences from neuroscientific research. They argue that these problems are yet to be solved and that organizational researchers who wish to incorporate neuroscientific advances into their work need to engage with them.


Cognitive, Affective, & Behavioral Neuroscience | 2009

Coarse threat images reveal theta oscillations in the amygdala: a magnetoencephalography study

Frances A. Maratos; Karin Mogg; Brendan P. Bradley; Gina Rippon; Carl Senior

Neurocognitive models propose a specialized neural system for processing threat-related information, in which the amygdala plays a key role in the analysis of threat cues. fMRI research indicates that the amygdala is sensitive to coarse visual threat relevant information—for example, low spatial frequency (LSF) fearful faces. However, fMRI cannot determine the temporal or spectral characteristics of neural responses. Consequently, we used magnetoencephalography to explore spatiotemporal patterns of activity in the amygdala and cortical regions with blurry (LSF) and normal angry, fearful, and neutral faces. Results demonstrated differences in amygdala activity between LSF threat-related and LSF neutral faces (50–250 msec after face onset). These differences were evident in the theta range (4–8 Hz) and were accompanied by power changes within visual and frontal regions. Our results support the view that the amygdala is involved in the early processing of coarse threat related information and that theta is important in integrating activity within emotion-processing networks.

Collaboration


Dive into the Carl Senior's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nick Lee

University of Warwick

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge