Carl Wassgren
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carl Wassgren.
Physics of Fluids | 2003
D. Chehata; Roberto Zenit; Carl Wassgren
The flow around a fixed cylinder immersed in a uniform granular flow is studied experimentally. Experiments are performed in a tall vertical chute producing a quasi two-dimensional granular flow. A storage bin at the top of the chute feeds glass particles into the channel while the mean velocity of the flow is controlled by varying the exit width of a hopper located at the channel bottom. Measurements of the drag force acting on a fixed cylinder are made using a strain gauge force measurement system. The flow velocity field is measured through a transparent wall using a particle image velocimetry analysis of high speed video recordings of the flow. Experiments are performed for a range of upstream particle velocities, cylinder diameters, and two sizes of glass particles. For the range of velocities studied, the mean drag force acting on the cylinder is independent of the mean flow velocity, contrary to what is expected from any ordinary fluid. The drag force increases with cylinder diameter and decreases with particle diameter. The drag force scales with the asymptotic static stress state in a tall granular bed. The drag coefficient, defined in terms of a dynamic pressure and an effective cylinder diameter, scales with the flow Froude number based on the hydraulic diameter of the channel. This analysis indicates that the drag acting on the cylinder is strongly affected by the surrounding channel geometry. Although the drag force on the cylinder does not change with the upstream flow velocity, the flow streamlines do change with velocity. A large stagnation zone forms at the leading edge of the cylinder while at the trailing edge an empty wake is observed. The wake size increases with flow velocity. Measurements of the flow vorticity and granular temperature are also presented and discussed.
Journal of Applied Mechanics | 1996
Carl Wassgren; Christopher E. Brennen; Melany L. Hunt
A deep bed of granular material (more than six layers of particles) was subjected to sinusoidal, vertical vibrations. Several phenomena were observed depending on the amplitude of excitation. These included heaping, surface waves, and arching; the transitions from one state to another involved various dynamic instabilites and bifurcations. The paper includes a description of these phenomena and the characteristic properties associated with each in addition to measurements of the transitions from one phenomena to another.
Journal of Tribology-transactions of The Asme | 2004
Niranjan S. Ghaisas; Carl Wassgren; Farshid Sadeghi
A six-degree-of-freedom model was developed and used to simulate the motion of all elements in a cylindrical roller bearing. Cage instability has been studied as a function of the roller-race and roller-cage pocket clearances for light-load and high-speed conditions. The effects of variation in inner race speed, misalignment, cage asymmetry, and varying size of one of the rollers have been investigated. In addition, three different roller profiles have been used to study their impact on cage dynamics. The results indicate that the cage exhibits stable motion for small values of roller-race and roller-cage pocket clearances. A rise in instability leads to discrete cage-race collisions with high force magnitudes. Race misalignment leads to a rise in instability for small roller-cage pocket clearances since skew control is provided by the sides of the cage pocket. One roller of larger size than the others causes inner race whirl and leads to stable cage motion for small roller-race clearances without any variation in roller-cage pocket clearance. Cage asymmetry and different roller profiles have a negligible impact on cage motion.
Physics of Fluids | 2002
Carl Wassgren; Melany L. Hunt; P. J. Freese; J. Palamara; Christopher E. Brennen
The discharge of granular material from a hopper subject to vertical sinusoidal oscillations was investigated using experiments and discrete element computer simulations. With the hopper exit closed, side-wall convection cells are observed, oriented such that particles move up along the inclined walls of the hopper and down at the center line. The convection cells are a result of the granular bed dilation during free fall and the subsequent interaction with the hopper walls. The mass discharge rate for a vibrating hopper scaled by the discharge rate without vibration reaches a maximum value at a dimensionless velocity amplitude just greater than 1. Further increases in the velocity decrease the discharge rate. This decrease occurs due to a decrease in the bulk density of the discharging material when vibration is applied.
Physics of Fluids | 2013
Yi Guo; Carl Wassgren; Bruno C. Hancock; William R. Ketterhagen; Jennifer S. Curtis
Granular shear flows of flat disks and elongated rods are simulated using the Discrete Element Method. The effects of particle shape, interparticle friction, coefficient of restitution, and Youngs modulus on the flow behavior and solid phase stresses have been investigated. Without friction, the stresses decrease as the particles become flatter or more elongated due to the effect of particle shape on the motion and interaction of particles. In dense flows, the particles tend to have their largest dimension aligned in the flow direction and their smallest dimension aligned in the velocity gradient direction, such that the contacts between the particles are reduced. The particle alignment is more significant for flatter disks and more elongated rods. The interparticle friction has a crucial impact on the flow pattern, particle alignment, and stress. Unlike in the smooth layer flows with frictionless particles, frictional particles are entangled into large masses which rotate like solid bodies under shear. ...
Journal of Applied Mechanics | 1996
Christopher E. Brennen; S. Ghosh; Carl Wassgren
A bed of granular material which is subjected to vertical vibration will exhibit at least one sudden expansion at a critical acceleration amplitude. This sudden expansion corresponds to a bifurcation similar to that exhibited by a single ball bouncing on a vibrating plate. Theoretical analysis based on this model yields results which are in accord with the experimental observations. Other bifurcations may occur at higher vibration levels.
Physics of Fluids | 1999
Melany L. Hunt; R. C. Weathers; A. T. Lee; Christopher E. Brennen; Carl Wassgren
The current experiments investigate the discharge of glass spheres in a planar wedge-shaped hopper (45 degree sidewalls) that is vibrated hoizontally. When the hopper is discharged without vibration, the discharge occurs as a funnel flow, with the material exiting the central region of the hopper and stagnant material along the sides. With horizontal vibration, the discharge rate increases with the velocity of vibration as compared with the discharge rate without vibration. For a certain range of acceleration parameters (20-30 Hz and accelerations greater than about 1 g), the discharge of the material occurs in an inverted-funnel pattern, with the material along the sides exiting first, followed by the material in the core; the free surface shows a peak at the center of the hopper with the free surface particles avalanching from the center toward the sides. During the deceleration phase of a vibration cycle, particles all along the trailing or low-pressure wall separate from the surface and fall under gravity for a short period before reconnecting the hopper. For lower frequencies (5 and 10 Hz), the free surface remains horizontal and the material appears to discharge uniformly from the hopper.
Physics of Fluids | 2006
Rahul Bharadwaj; Carl Wassgren; Roberto Zenit
This paper presents results from hard-particle discrete element simulations of a two-dimensional dilute stream of particles accelerating past an immersed fixed cylinder. Simulation measurements of the drag force Fd are expressed in terms of a dimensionless drag coefficient, Cd=Fd∕[12ρνU2(D+d)], where ρ is the particle density, ν is the upstream solid fraction, U is the upstream instantaneous velocity, and D and d are the cylinder and particle diameters, respectively. Measurements indicate that the cylinder’s unsteady drag coefficient does not vary significantly from its steady (nonaccelerating) drag coefficient for both frictionless and frictional particles implying that the added mass for the flow is negligible. However, the drag coefficient is larger than its nominal value during an initial transient stage, during which a shock wave develops in front of the cylinder. Once the shock has developed, the drag coefficient remains constant despite the stream’s acceleration. The duration of the shock developme...
Journal of Pharmaceutical Innovation | 2013
Dana Barrasso; Sarang Oka; Ariel R. Muliadi; James D. Litster; Carl Wassgren
Continuous tablet manufacturing has been investigated for its potential advantages (e.g., cost, efficiency, and controllability) over more conventional batch processes. One avenue for tablet manufacturing involves roller compaction followed by milling to form compactible granules. A better understanding of these powder processes is needed to implement Quality by Design in pharmaceutical manufacturing. In this study, ribbons of microcrystalline cellulose were produced by roller compaction and milled in a conical screen mill. A full factorial experiment was performed to evaluate the effects of ribbon density, screen size, and impeller speed on the product size distribution and steady-state mass holdup of the mill. A population balance model was developed to simulate the milling process, and a parameter estimation technique was used to calibrate the model with a subset of experimental data. The calibrated model was then simulated at other processing conditions and compared with additional unused experimental data. Statistical analyses of the results showed good agreement, demonstrating the model’s predictive capability in quantifying milled product critical quality attributes within the experimental design space. This approach can be used to optimize the design space of the process, enabling Quality by Design.
Aaps Pharmscitech | 2008
Tao Feng; Feng Wang; Rodolfo Pinal; Carl Wassgren; M. Teresa Carvajal
The purpose of this research was to investigate the variability of the roller compaction process while monitoring in-line with near-infrared (NIR) spectroscopy. In this paper, a pragmatic method in determining this variability of in-line NIR monitoring roller compaction process was developed and the variability limits were established. Fast Fourier Transform (FFT) analysis was used to study the source of the systematic fluctuations of the NIR spectra. An off-line variability analysis method was developed as well to simulate the in-line monitoring process in order to determine the variability limits of the roller compaction process. For this study, a binary formulation was prepared composed of acetaminophen and microcrystalline cellulose. Different roller compaction parameters such as roll speed and feeding rates were investigated to understand the variability of the process. The best-fit line slope of NIR spectra exhibited frequency dependence only on the roll speed regardless of the feeding rates. The eccentricity of the rolling motion of rollers was identified as the major source of variability and correlated with the fluctuations of the slopes of NIR spectra. The off-line static and dynamic analyses of the compacts defined two different variability of the roller compaction; the variability limits were established. These findings were proved critical in the optimization of the experimental setup of the roller compaction process by minimizing the variability of NIR in-line monitoring.