Carl Whatling
AstraZeneca
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carl Whatling.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2000
Stefan-Martin Herrmann; Carl Whatling; Eva Brand; Viviane Nicaud; Jérôme Gariepy; Alain Simon; Alun Evans; Jean-Bernard Ruidavets; Dominique Arveiler; Gérald Luc; Laurence Tiret; Adriano M. Henney; François Cambien
The matrix Gla protein (MGP) is an important inhibitor of vessel and cartilage calcification that is strongly expressed in human calcified, atherosclerotic plaques and could modulate plaque calcification and coronary heart disease risk. Using a genetic approach, we explored this possibility by identifying polymorphisms of the MGP gene and testing their possible association with myocardial infarction (MI) and plaque calcification. Eight polymorphisms were identified in the coding and 5′-flanking sequences of the MGP gene. All polymorphisms were investigated in 607 patients with MI and 667 control subjects recruited into the ECTIM Study (Etude Cas-Témoins de l’Infarctus du Myocarde) and in 717 healthy individuals with echographically assessed arterial calcification and atherosclerosis who were participating in the AXA Study. In the ECTIM Study, alleles and genotypes were distributed similarly in patients and controls in the whole study group; in only 1 subgroup of subjects defined as being at low risk for MI were the concordant A −7 and Ala 83 alleles more frequent in patients with MI than in controls (P <0.003). In the AXA Study among subjects with femoral atherosclerosis, the same alleles were more common in the presence than the absence of plaque calcification (P <0.025). The other MGP polymorphisms were not associated with any investigated clinical phenotype. Transient transfection experiments with allelic promoter-reporter gene constructs and DNA-protein interaction assays were carried out to assess possible in vitro functionality of the promoter variants detected at positions −814, −138, and −7 relative to the start of transcription. When compared with the −138 T allele, the minor −138 C allele consistently conferred a reduced promoter activity of −20% (P <0.0001) in rat vascular smooth muscle cells and of −50% (P <0.004) in a human fibroblast cell line, whereas the other polymorphisms, including −7, displayed no evidence of in vitro functionality. We conclude that the A −7 or Ala 83 alleles of the MGP gene may confer an increased risk of plaque calcification and MI; however, the observed relationships are weak or limited to subgroups of patients and therefore need confirmation.
American Journal of Pathology | 2002
Sofia Jormsjö; Dirk Wuttge; Allan Sirsjö; Carl Whatling; Anders Hamsten; Sten Stemme; Per Eriksson
Several groups of proteolytic enzymes are able to degrade components of the extracellular matrix. During atherosclerosis, matrix remodeling is believed to influence the migration and proliferation of cells within the plaque. In the present study, gene expression of several proteases and their inhibitors was analyzed during the development of atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. Quantitative real-time polymerase chain reaction was used to study gene expression of proteases after 10 and 20 weeks in ApoE-/- and C57BL/6 mice and in atherosclerotic lesions and nonaffected regions of the same ApoE-/- mouse. Some of the differentially expressed proteolytic enzymes were studied by immunohistochemistry. The matrix metalloproteinase (MMP)-9 and its inhibitor TIMP-1 were differentially expressed and the expression increased with time. Urokinase-type plasminogen activator showed no major expression. In contrast, cathepsins B, D, L, and S all showed strong and increased expression in ApoE-/- mice compared to C57BL/6 mice whereas the expression of their inhibitor, cystatin C, did not differ between the two mouse strains. The expression of cathepsins was mainly localized to the lesions and not to nonaffected regions of the aorta of ApoE-/- mice. Furthermore, cathepsin expression was similar to the expression of the macrophage marker macrosialin (CD68) although expression of cathepsins B, D, and L could be demonstrated in healthy C57BL/6 mice and in nonaffected vessel segments of atherosclerotic ApoE-/- mice. Cathepsin S mRNA expression was restricted to lesions of ApoE-/- mice. Furthermore, cathepsin S was the only cathepsin that was expressed in the media and absent in lipid-rich regions. All cathepsins studied showed intimal expression, the degree and localization of which differed between individual cathepsins. In conclusion, increased expression of several cathepsins in atherosclerotic lesions suggests that these proteases may participate in the remodeling of extracellular matrix associated with the atherosclerotic process.
Cardiovascular Research | 2010
Gemma E. White; Thomas C.C. Tan; Alison E. John; Carl Whatling; William L. McPheat; David R. Greaves
Aims Fractalkine (CX3CL1) is a membrane-bound chemokine that signals through the G protein-coupled receptor CX3CR1 that is implicated in the development of atherosclerosis. We have previously reported that CX3CR1 is expressed by primary human coronary artery smooth muscle cells (CASMC), where it mediates chemotaxis towards CX3CL1. We sought to determine the effect of CX3CL1 on CASMC survival and proliferation and elucidate the signalling mechanisms involved. Methods and results CX3CL1 significantly reduces staurosporine-induced apoptosis of CASMC, as quantified by caspase 3 immunostaining and Annexin-V flow cytometry. Furthermore, CX3CL1 is a potent mitogen for primary CASMC and induces phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, measured by western blotting. Inhibition of either ERK or phosphoinositide 3-kinase (PI3K) signalling abrogates proliferation, while only PI3K signalling is involved in the anti-apoptotic effects of CX3CL1. We describe a novel and specific small molecule antagonist of CX3CR1 (AZ12201182) which abrogates the mitogenic and anti-apoptotic effects of CX3CL1 on CASMC. Pharmacological inhibition of the epidermal growth factor receptor (EGFR) blocks CASMC survival and DNA synthesis, indicating a previously undocumented role for EGFR signalling in response to CX3CL1 involving release of a soluble EGFR ligand. Specifically, CX3CL1 induces shedding of epiregulin and increases epiregulin mRNA expression 20-fold within 2 h. Finally, antibody neutralization of epiregulin abrogates the mitogenic effect of CX3CL1. Conclusion We have demonstrated two novel and important functions of CX3CL1 on primary human SMCs: anti-apoptosis and proliferation, both mediated via epiregulin-induced EGFR signalling. Our data have important implications in vascular pathologies including atherosclerosis, restenosis, and transplant accelerated arteriosclerosis, where the balance of SMC proliferation and apoptosis critically determines both plaque stability and vessel stenosis.
British Journal of Clinical Pharmacology | 2011
Timothy D. Warner; Sven Nylander; Carl Whatling
Aspirin and P2Y(12) antagonists are commonly used anti-platelet agents. Aspirin produces its effects through inhibition of thromboxane A(2) (TXA(2)) production, while P2Y(12) antagonists attenuate the secondary responses to ADP released by activated platelets. The anti-platelet effects of aspirin and a P2Y(12) antagonist are often considered to be separately additive. However, there is evidence of an overlap in effects, in that a high level of P2Y(12) receptor inhibition can blunt TXA(2) receptor signalling in platelets and reduce platelet production of TXA(2). Against this background, the addition of aspirin, particularly at higher doses, could cause significant reductions in the production of prostanoids in other tissues, e.g. prostaglandin I(2) from the blood vessel wall. This review summarizes the data from clinical studies in which dose-dependent effects of aspirin on prostanoid production have been evaluated by both plasma and urinary measures. It also addresses the biology underlying the cardiovascular effects of aspirin and its influences upon prostanoid production throughout the body. The review then considers whether, in the presence of newer, more refined P2Y(12) receptor antagonists, aspirin may offer less benefit than might have been predicted from earlier clinical trials using more variable P2Y(12) antagonists. The possibility is reflected upon, that when combined with a high level of P2Y(12) blockade the net effect of higher doses of aspirin could be removal of anti-thrombotic and vasodilating prostanoids and so a lessening of the anti-thrombotic effectiveness of the treatment.
BMC Molecular Biology | 2006
Malin Andersen; Boris Lenhard; Carl Whatling; Per Eriksson; Jacob Odeberg
BackgroundCD36 is a membrane glycoprotein involved in a variety of cellular processes such as lipid transport, immune regulation, hemostasis, adhesion, angiogenesis and atherosclerosis. It is expressed in many tissues and cell types, with a tissue specific expression pattern that is a result of a complex regulation for which the molecular mechanisms are not yet fully understood. There are several alternative mRNA isoforms described for the gene. We have investigated the expression patterns of five alternative first exons of the CD36 gene in several human tissues and cell types, to better understand the molecular details behind its regulation.ResultsWe have identified one novel alternative first exon of the CD36 gene, and confirmed the expression of four previously known alternative first exons of the gene. The alternative transcripts are all expressed in more than one human tissue and their expression patterns vary highly in skeletal muscle, heart, liver, adipose tissue, placenta, spinal cord, cerebrum and monocytes. All alternative first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins. The alternative promoters lack TATA-boxes and CpG islands. The upstream region of exon 1b contains several features common for house keeping gene and monocyte specific gene promoters.ConclusionTissue-specific expression patterns of the alternative first exons of CD36 suggest that the alternative first exons of the gene are regulated individually and tissue specifically. At the same time, the fact that all first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins may suggest that the alternative first exons are coregulated in this cell type and environmental condition. The molecular mechanisms regulating CD36 thus appear to be unusually complex, which might reflect the multifunctional role of the gene in different tissues and cellular conditions.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2004
Carl Whatling; William L. McPheat; Eva Hurt-Camejo
Geometric remodeling is an important component of vascular pathologies, including restenosis and atherosclerosis. Although our understanding of the precise events involved in vascular remodeling is far from complete, it is generally accepted that local breakdown of extracellular matrix (ECM), smooth muscle cell migration, and matrix reorganization are important components.1 In this respect, particular attention has been directed toward the role of matrix metalloproteinases (MMPs), enzymes capable of remodeling the ECM. However, being able to understand the specific contribution of individual members of a proteinase family that share overlapping substrates is a significant challenge. See page 54 MMPs are Zn-containing neutral endopeptidases. At least 23 different MMPs have been identified that, as a family, have the capacity to degrade all components of the ECM, in addition to some nonmatrix substrates.2 Within the family, several subgroups exist, based on substrate specificities or domain structures. The activity of MMPs is controlled at several distinct levels, including transcription, activation of zymogens, and interaction with specific inhibitors, the TIMPs (tissue inhibitors of MMPs). The two gelatinases MMP-2 and MMP-9 have received particular attention in analysis of vascular remodeling due to their expression by smooth muscle cells and leukocytes and ability to breakdown components of the basement membrane and collagens. At least in vitro, both enzymes have a very similar substrate profile. However, their expression in the vascular wall is differently controlled, in that a basal expression of MMP-2 can be detected within the media, whereas MMP-9 expression is only apparent …
Expert Opinion on Investigational Drugs | 2007
Carl Whatling; William L. McPheat; Margareta Herslöf
The 5-lipoxygenase pathway is responsible for the production of leukotrienes – inflammatory lipid mediators that have a role in innate immunity, but that can also have pathological effects in inflammatory diseases. Recently, a potential link between leukotriene production and atherosclerosis has been proposed. The expression of leukotriene biosynthetic enzymes and leukotriene receptors has been identified in coronary and carotid atherosclerotic plaques, and the levels of biosynthetic enzymes have been correlated with the clinical symptoms of unstable plaques. Genetic variants in 5-lipoxygenase pathway genes have also been associated with a relative risk of developing myocardial infarction and stroke. On the basis of these discoveries, antileukotriene compounds are now being evaluated for the treatment of cardiovascular disease. Several tool compounds have been shown to limit the progression of lesion development in preclinical models of atherosclerosis, and three compounds, including two drugs previously developed for asthma, are undergoing clinical trials in patients with acute coronary syndromes.
Journal of Medicinal Chemistry | 2015
Malin Lemurell; Johan Ulander; Susanne Winiwarter; Anders Dahlén; Öjvind Davidsson; Hans Emtenäs; Johan Broddefalk; Marianne Swanson; Daniel Hovdal; Alleyn T. Plowright; Anna Pettersen; Marie Rydén-Landergren; Jonas G. Barlind; Antonio Llinas; Margareta Herslöf; Tomas Drmota; Kalle Sigfridsson; Sara Moses; Carl Whatling
A drug discovery program in search of novel 5-lipoxygenase activating protein (FLAP) inhibitors focused on driving a reduction in lipophilicity with maintained or increased ligand lipophilic efficiency (LLE) compared to previously reported compounds led to the discovery of AZD6642 (15b). Introduction of a hydrophilic tetrahydrofuran (THF) ring at the stereogenic central carbon atom led to a significant shift in physicochemical property space. The structure-activity relationship exploration and optimization of DMPK properties leading to this compound are described in addition to pharmacokinetic analysis and an investigation of the pharmacokinetic (PK)-pharmacodynamic (PD) relationship based on ex vivo leukotriene B4 (LTB4) levels in dog. AZD6642 shows high specific potency and low lipophilicity, resulting in a selective and metabolically stable profile. On the basis of initial PK/PD relation measured, a low dose to human was predicted.
Bioorganic & Medicinal Chemistry Letters | 2015
Daniel Pettersen; Oejvind Davidsson; Carl Whatling
A number of FLAP inhibitors have been progressed to clinical trials for respiratory and other inflammatory indications but so far no drug has reached the market. With this Digest we assess the opportunity to develop FLAP inhibitors for indications beyond respiratory disease, and in particular for atherosclerotic cardiovascular disease. We also show how recently disclosed FLAP inhibitors have structurally evolved from the first generation FLAP inhibitors paving the way for new compound classes.
The FASEB Journal | 2016
Aránzazu Mediero; Tuere Wilder; Vishnu S. R. Reddy; Qian Cheng; Nick Tovar; Paulo G. Coelho; Lukasz Witek; Carl Whatling; Bruce N. Cronstein
As many as 10% of bone fractures heal poorly, and large bone defects resulting fromtrauma, tumor, or infection may not heal without surgical intervention. Activation of adenosine A2A receptors (A2ARs) stimulates bone formation. Ticagrelor and dipyridamole inhibit platelet function by inhibiting P2Y12 receptors and platelet phosphodiesterase, respectively, but share the capacity to inhibit cellularuptake of adenosine and thereby increase extracellular adenosine levels. Because dipyridamole promotes bone regeneration by an A2A R‐mediated mechanism we determined whether ticagrelor could regulate the cells involved in bone homeostasis and regeneration in a murine model and whether inhibition of P2Y12 or indirect A2AR activation via adenosine was involved. Ticagrelor, dipyridamole and the active metabolite of clopidogrel (CAM), an alternative P2Y12 antagonist, inhibited osteoclast differentiation and promoted osteoblast differentiation in vitro. A2AR blockade abrogated the effects of ticagrelor and dipyridamole on osteoclast and osteoblast differentiation where as A2BR blockade abrogated the effects of CAM. Ticagrelor and CAM, when applied to a 3‐dimentional printed resorbable calcium‐triphosphate/ hydroxyapatite scaffold implanted in a calvarial bone defect, promoted significantly more bone regeneration than the scaffold alone and as much bone regeneration as BMP‐2, a growth factor currently used to promote bone regeneration. These results suggest novel approaches to targeting adenosine receptors in the promotion of bone regeneration.—Mediero, A., Wilder, T., Reddy, V. S. R., Cheng, Q., Tovar, N., Coelho, P. G., Witek, L., Whatling, C., Cronstein, B. N. Ticagrelor regulates osteoblast and osteoclast function and promotes bone formation in vivo via an adenosine‐dependent mechanism. FASEB J. 30, 3887–3900 (2016) www.fasebj.org