Carla Coackley
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carla Coackley.
Radiotherapy and Oncology | 2008
Stanley K. Liu; Carla Coackley; Mechthild Krause; Farid Jalali; Norman Chan; Robert G. Bristow
The chemo- and radioresponse of tumor cells can be determined by genetic factors (e.g., those that modify cell cycle arrest, DNA damage repair or cell death) and microenvironmental factors, such as hypoxia. Poly(ADP-ribose) polymerase (PARP) is a nuclear enzyme that rapidly recognizes and binds to DNA breaks to facilitate DNA strand break repair. Pre-clinical data suggest that PARP inhibitors (PARPi) may potentiate the effects of radiotherapy and chemotherapy. However, it is unclear as to whether PARPi are effective against hypoxic cells. We therefore tested the role for a novel PARPi, ABT-888, as a radiosensitizing agent under hypoxic conditions. Using human prostate (DU-145, 22RV1) and non-small cell lung (H1299) cancer cell lines, we observed that ABT-888 inhibited both recombinant PARP activity and intracellular PARP activity (86% to 92% decrease in all 3 cells lines following 2.5 microM treatment). ABT-888 was toxic to both oxic and hypoxic cells. When ABT-888 was combined with ionizing radiation (IR), clonogenic radiation survival was decreased by 40-50% under oxic conditions. Under acute hypoxia, ABT-888 radiosensitized malignant cells to a level similar to oxic radiosensitivity. To our knowledge, this is the first study to demonstrate that inhibition of PARP activity can sensitize hypoxic cancer cells and the combination of IR-PARPi has the potential to improve the therapeutic ratio of radiotherapy.
Cancer Research | 2005
Shahnaz T. Al Rashid; Graham Dellaire; Andrew Cuddihy; Farid Jalali; Mita Vaid; Carla Coackley; M. Folkard; Yang Xu; Benjamin P C Chen; David J. Chen; Lothar Lilge; Kevin Prise; David P. Bazett Jones; Robert G. Bristow
Despite a clear link between ataxia-telangiectasia mutated (ATM)-dependent phosphorylation of p53 and cell cycle checkpoint control, the intracellular biology and subcellular localization of p53 phosphoforms during the initial sensing of DNA damage is poorly understood. Using G0-G1 confluent primary human diploid fibroblast cultures, we show that endogenous p53, phosphorylated at Ser15 (p53Ser15), accumulates as discrete, dose-dependent and chromatin-bound foci within 30 minutes following induction of DNA breaks or DNA base damage. This biologically distinct subpool of p53Ser15 is ATM dependent and resistant to 26S-proteasomal degradation. p53Ser15 colocalizes and coimmunoprecipitates with gamma-H2AX with kinetics similar to that of biochemical DNA double-strand break (DNA-dsb) rejoining. Subnuclear microbeam irradiation studies confirm p53Ser15 is recruited to sites of DNA damage containing gamma-H2AX, ATM(Ser1981), and DNA-PKcs(Thr2609) in vivo. Furthermore, studies using isogenic human and murine cells, which express Ser15 or Ser18 phosphomutant proteins, respectively, show defective nuclear foci formation, decreased induction of p21WAF, decreased gamma-H2AX association, and altered DNA-dsb kinetics following DNA damage. Our results suggest a unique biology for this p53 phosphoform in the initial steps of DNA damage signaling and implicates ATM-p53 chromatin-based interactions as mediators of cell cycle checkpoint control and DNA repair to prevent carcinogenesis.
Clinical Cancer Research | 2012
Michael Fraser; Helen Zhao; Kaisa R. Luoto; Cecilia Lundin; Carla Coackley; Norman Chan; Anthony Michael Joshua; Tarek A. Bismar; Andrew Evans; Thomas Helleday; Robert G. Bristow
Purpose: PTEN deletions in prostate cancer are associated with tumor aggression and poor outcome. Recent studies have implicated PTEN as a determinant of homologous recombination (HR) through defective RAD51 function. Similar to BRCA1/2-defective tumor cells, PTEN-null prostate and other cancer cells have been reported to be sensitive to PARP inhibitors (PARPi). To date, no direct comparison between PTEN and RAD51 expression in primary prostate tumors has been reported. Experimental Design: Prostate cancer cell lines and xenografts with known PTEN status (22RV1-PTEN+/+, DU145-PTEN+/−, PC3-PTEN−/−) and H1299 and HCT116 cancer cells were used to evaluate how PTEN loss affects RAD51 expression and PARPi sensitivity. Primary prostate cancers with known PTEN status were analyzed for RAD51 expression. Results: PTEN status is not associated with reduced RAD51 mRNA or protein expression in primary prostate cancers. Decreased PTEN expression did not reduce RAD51 expression or clonogenic survival following PARPi among prostate cancer cells that vary in TP53 and PTEN. PARPi sensitivity instead associated with a defect in MRE11 expression. PTEN-deficient cells had only mild PARPi sensitivity and no loss of HR or RAD51 recruitment. Clonogenic cell survival following a series of DNA damaging agents was variable: PTEN-deficient cells were sensitive to ionizing radiation, mitomycin-C, UV, H2O2, and methyl methanesulfonate but not to cisplatin, camptothecin, or paclitaxel. Conclusions: These data suggest that the relationship between PTEN status and survival following DNA damage is indirect and complex. It is unlikely that PTEN status will be a direct biomarker for HR status or PARPi response in prostate cancer clinical trials. Clin Cancer Res; 18(4); 1015–27. ©2011 AACR.
Cell Cycle | 2011
Michael Fraser; Shane M. Harding; Helen Zhao; Carla Coackley; Daniel Durocher; Robert G. Bristow
AKT is hyper-activated in many human cancers and promotes proliferation and cancer cell survival in response to DNA damaging agents. Ionizing radiation (IR) produces DNA double strand breaks (DSB) and activates AKT, however a direct mechanism linking intra-nuclear DSB and AKT signaling is lacking. Here we demonstrate that AKT is phosphorylated following IR in benign and malignant cells and, using colony-forming assays and in vitro rejoining assays, show that AKT promotes non-homologous end joining-mediated DSB repair and cell survival following IR. Further studies revealed that pAKT-S473, but not pAKT-T308 or total AKT, accumulates in the vicinity of IR-induced DSB and co-localizes with γH2AX and ATM-pSer1981. Based on whole-cell IR, nuclear UV microbeam, and endonuclease-induced DSB studies, we observed that pAKT-S473 is up-regulated by a DSB-induced signaling cascade, and this is dependent on the DSB sensor protein, MRE11. MRE11-dependent pAKT-S473 did not require the MRE11 endonuclease domain. The histone ubiquitin ligase RNF168 is also required for DSB-induced pAKT-S473, and DSB-induced pAKT-S473 is independent of DNA-PKcs, PI3K, and ATR. These data demonstrate that DSB activate a signaling cascade that directly promotes a PI3K-independent pathway of AKT phosphorylation that is dependent on MRE11-ATM-RNF168 signaling. Thus, these data directly link the presence of DNA breaks to AKT-mediated cell survival and support AKT as a target for cancer therapy.
Cancer Research | 2010
Kaisa R. Luoto; A. Meng; Amanda R. Wasylishen; Helen Zhao; Carla Coackley; Linda Z. Penn; Robert G. Bristow
MYC regulates a myriad of genes controlling cell proliferation, metabolism, differentiation, and apoptosis. MYC also controls the expression of DNA double-strand break (DSB) repair genes and therefore may be a potential target for anticancer therapy to sensitize cancer cells to DNA damage or prevent genetic instability. In this report, we studied whether MYC binds to DSB repair gene promoters and modulates cell survival in response to DNA-damaging agents. Chromatin immunoprecipitation studies showed that MYC associates with several DSB repair gene promoters including Rad51, Rad51B, Rad51C, XRCC2, Rad50, BRCA1, BRCA2, DNA-PKcs, XRCC4, Ku70, and DNA ligase IV. Endogenous MYC protein expression was associated with increased RAD51 and KU70 protein expression of a panel of cancer cell lines of varying histopathology. Induction of MYC in G(0)-G(1) and S-G(2)-M cells resulted in upregulation of Rad51 gene expression. MYC knockdown using small interfering RNA (siRNA) led to decreased RAD51 expression but minimal effects on homologous recombination based on a flow cytometry direct repeat green fluorescent protein assay. siRNA to MYC resulted in tumor cell kill in DU145 and H1299 cell lines in a manner independent of apoptosis. However, MYC-dependent changes in DSB repair protein expression were not sufficient to sensitize cells to mitomycin C or ionizing radiation, two agents selectively toxic to DSB repair-deficient cells. Our results suggest that anti-MYC agents may target cells to prevent genetic instability but would not lead to differential radiosensitization or chemosensitization.
Clinical Cancer Research | 2010
Hisayuki Kato; Emma Ito; Wei Shi; Nehad M. Alajez; Shijun Yue; Carolina Lee; Norman Chan; Nirmal Bhogal; Carla Coackley; Doug Vines; David Green; John Waldron; Patrick J. Gullane; Robert G. Bristow; Fei-Fei Liu
Purpose: Rapidly metabolizing tumor cells have elevated levels of nicotinamide phosphoribosyltransferase, an enzyme involved in NAD+ biosynthesis, which serves as an important substrate for proteins involved in DNA repair. GMX1777, which inhibits nicotinamide phosphoribosyltransferase, was evaluated in two human head and neck cancer models in combination with radiotherapy. Experimental Design: Effects of GMX1777-mediated radiosensitization were examined via metabolic and cytotoxicity assays in vitro; mechanism of action, in vivo antitumor efficacy, and radiosensitization were also investigated. Results: IC50 values of GMX1777 for FaDu and C666-1 cells were 10 and 5 nmol/L, respectively, which interacted synergistically with radiotherapy. GMX1777 induced a rapid decline in intracellular NAD+ followed by ATP reduction associated with significant cytotoxicity. These metabolic changes were slightly increased with the addition of radiotherapy, although poly(ADP-ribose) polymerase activity was significantly reduced when GMX1777 was combined with radiotherapy, thereby accounting for the synergistic cytotoxicity of these two modalities. Systemic GMX1777 administration with local tumor radiotherapy caused complete disappearance of FaDu and C666-1 tumors for 50 and 20 days, respectively. There was also significant reduction in tumor vascularity, particularly for the more sensitive FaDu model. [18F]FDG-positron emission tomography/computed tomography images showed reduction in [18F]FDG uptake after GMX1777 administration, showing decreased glucose metabolism in vivo. Conclusions: Our data represent the first report showing that GMX1777 plus radiotherapy is an effective therapeutic strategy for head and neck cancer, mediated via pleiotropic effects of inhibition of DNA repair and tumor angiogenesis, while sparing normal tissues. Therefore, GMX1777 combined with radiotherapy definitely warrants clinical evaluation in human head and neck cancer patients. Clin Cancer Res; 16(3); 898–911
Radiotherapy and Oncology | 2015
Cihan Gani; Carla Coackley; Ramya Kumareswaran; Christina Schütze; Mechthild Krause; Gaetano Zafarana; Robert G. Bristow
BACKGROUND AND PURPOSE Pre-clinical data have shown that PARP inhibitors (PARPi) may increase the efficacy of radiotherapy in prostate cancer. However, it is uncertain as to whether PARPi lead to clonogenic kill when combined with radiotherapy (RT). MATERIAL AND METHODS We tested the PARP inhibitor AZD-2281 as a radiosensitizing agent under oxic and hypoxic conditions for clonogenic survival in vitro and in vivo using the human prostate cancer cell line, 22Rv1. In addition, the effects of PARPi+RT on normal tissue were investigated using a crypt clonogenic assay. RESULTS AZD-2281 inhibited cellular PARP activity under both oxic and hypoxic conditions. The addition of AZD-2281 radiosensitized 22Rv1 cells under oxia, acute hypoxia and chronic hypoxia in vitro. The combination of AZD-2281 with fractionated radiotherapy resulted in a significant growth delay and clonogenic kill in vivo. No increased gut toxicity was observed using this combined PARPi+radiotherapy regimen. CONCLUSIONS This is the first preclinical study to demonstrate direct clonogenic kill in vivo by the addition of AZD-2281 to radiotherapy. As we did not observe gut toxicity, the use of PARPi in the context of prostate cancer radiotherapy warrants further investigation in clinical trials.
Radiotherapy and Oncology | 2011
Shane M. Harding; Carla Coackley; Robert G. Bristow
The ATM kinase is activated by chromatin modification following exogenous and endogenous DSBs or cell stress, including acute anoxia. The p53 binding protein 1 (53BP1) contains multiple ATM-consensus phosphorylation sites in its N- and C-termini and may therefore be a distal read-out of ATM function. We have examined the cellular activation of these phosphorylation sites for the first time in situ following anoxic/hypoxic stress and IR-induced exogenous DSBs. We show that multiple residues of 53BP1 are phosphorylated and that these phosphoforms form discrete nuclear foci following IR or during DNA replication as exogenous or endogenous DNA double strand breaks (DSBs), respectively. Novel data pertaining to the phosphorylation of 53BP1(Ser25)in situ supports its dependency on the ATM kinase; but this occurs independently of p53 function. We show that 53BP1(Ser25) is activated specifically in S-phase cells during anoxia in an ATM-dependent manner. Exogenous DSBs form discrete IR-induced foci whereas oxygen stress induced non-localized 53BP1(Ser25) activation. Our in vitro data are supported by irradiated xenograft studies in vivo whereby 53BP1(Ser25) phosphorylation does not occur in sub-regions positive for the hypoxia marker EF5. We propose a model whereby DSBs induce chromatin modification at sites of DNA damage which are tracked by the ATM substrates γ H2AX and 53BP1(Ser25) in a mechanism distinct from p53-mediated cell cycle arrest. Together this work indicates 53BP1(Ser25), and possibly other 53BP1 phosphoforms, as a bona fide DSB-biomarkers for surveying ongoing DNA-damage related signaling in oxic and hypoxic cells during clinical radiotherapy.
Radiation Research | 2011
Shahnaz T. Al Rashid; Shane M. Harding; Cindy Law; Carla Coackley; Robert G. Bristow
Abstract We have previously shown that the Ser15-phosphorylated p53 phosphoform, p53Ser15, can localize at sites of ionizing radiation-induced DNA damage. In this study, we hypothesized that the non-specific DNA binding domain (NSDBD) of the p53 carboxy-terminus (C-terminus) mediates chromatin anchoring at sites of DNA damage to interact with two key mediators of the DNA damage response (DDR): ATM and 53BP1. Exogenous YFP-p53 fusion constructs expressing C-terminus deletion mutants of p53 were transfected into p53-null H1299 cells and tracked by microscopy and biochemistry to determine relative chromatin-binding pre- and postirradiation. We observed that exogenous YFP-p53WT and YFP-p53Δ367–393 associated with ATMSer1981 and 53BP1 in the nuclear, chromatin-bound fractions after DNA damage. Of interest, YFP-p53Δ1–299 fusion proteins, which lack transcriptional trans-activation and the Ser15-residue, bound to ATMSer1981 but not to 53BP1. In support of these data, we used subnuclear UV-microbeam and immunoprecipitation analyses of irradiated normal human fibroblasts (HDFs) that confirmed an interaction between endogenous p53 and ATM or 53BP1. Based on these observations, we propose a model whereby a pre-existing pool of p53 responds immediately to radiation-induced DNA damage using the C-terminus to spatially facilitate protein-protein interactions and the DDR at sites of DNA damage.
Molecular Cancer Therapeutics | 2008
Andrew Cuddihy; Farid Jalali; Carla Coackley; Robert G. Bristow
New molecular cancer treatment strategies aim to reconstitute wild-type p53 (WTp53) function in mutant p53 (MTp53)–expressing tumors as a means of resensitizing cells to chemotherapy or radiotherapy. The success of this approach may depend on whether MTp53 proteins are acting in a dominant-negative or independent gain-of-function mode. Herein, we describe an isogenic, temperature-sensitive p53 model (p53A138V) in p53-null human H1299 lung cancer cells in which WTp53 can be selectively coexpressed with a temperature-sensitive MTp53 allele (A138V) during initial DNA damage and subsequent DNA repair. Cells expressing MTp53 alone or coexpressing induced WTp53 and MTp53 were tested for p53 transcription, G1 and G2 cell cycle checkpoints, apoptosis, and long-term clonogenic survival following DNA damage. Transient transfection of WTp53 into H1299 cells, or shift-down of H1299-p53A138V stable transfectants to 32°C to induce WTp53, led to increased p21WAF1 expression and G1 and G2 arrests following DNA damage but did not increase BAX expression or apoptosis. In contrast, both transient and stable expression of the p53A138V mutant in p53-null H1299 cells (e.g. testing gain-of-function) at 37°C blocked p21WAF1 induction following DNA damage. Cell death was secondary to mitotic catastrophe and/or tumor cell senescence. Overexpression of WTp53 did not resensitize resistant MTp53-expressing cells to ionizing radiation, cisplatinum, or mitomycin C. Our results suggest that human MTp53 proteins can lead to resistant phenotypes independent of WTp53-mediated transcription and checkpoint control. This should be considered when using p53 as a prognostic factor and therapeutic target. [Mol Cancer Ther 2008;7(4):980–92]