Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carla D. Jorge is active.

Publication


Featured researches published by Carla D. Jorge.


FEBS Journal | 2007

α‐d‐Mannopyranosyl‐(1→2)‐α‐d‐glucopyranosyl‐(1→2)‐glycerate in the thermophilic bacterium Petrotoga miotherma − structure, cellular content and function

Carla D. Jorge; Pedro Lamosa; Helena Santos

The intracellular accumulation of low molecular mass organic compounds in response to stressful conditions was investigated in the thermophilic bacterium Petrotoga miotherma, a member of the order Thermotogales. This led to the discovery of a new solute, whose structure was established as α‐d‐mannopyranosyl‐(1→2)‐α‐d‐glucopyranosyl‐(1→2)‐glycerate (MGG) by MMR spectroscopy and MS. Under optimum growth conditions (3% NaCl; 55 °C), MGG was the major solute [up to 0.6 µmol·(mg protein)−1]; α‐glutamate and proline were also present but in minor amounts [below 0.08 µmol·(mg protein)−1]. The level of MGG increased notably with the salinity of the growth medium up to the optimum NaCl concentration. At higher NaCl concentrations, however, the level of MGG decreased, whereas the levels of proline and α‐glutamate increased about five‐fold and 10‐fold, respectively. MGG plays a role during low‐level osmotic adaptation of Petrotoga miotherma, whereas α‐glutamate and, to a lesser extent, proline are used for osmoprotection under salt stress. MGG is not part of the cell strategy for coping with heat or oxidative stress. Nevertheless, MGG was an efficient protector of pig heart malate dehydrogenase against heat inactivation and freeze‐drying, although mannosylglycerate was better. This is the first report on the occurrence of MGG in living systems.


Biochimica et Biophysica Acta | 2013

Inhibition of formation of α-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson's disease.

Cristiana Faria; Carla D. Jorge; Nuno Borges; Sandra Tenreiro; Tiago F. Outeiro; Helena Santos

BACKGROUND Protein aggregation in the brain is a central hallmark in many neurodegenerative diseases. In Parkinsons disease, α-synuclein (α-Syn) is the major component of the intraneuronal inclusions found in the brains of patients. Current therapeutics is merely symptomatic, and there is a pressing need for developing novel therapies. Previously we showed that mannosylglycerate (MG), a compatible solute typical of marine microorganisms thriving in hot environments, is highly effective in protecting a variety of model proteins against thermal denaturation and aggregation in vitro. METHODS Saccharomyces cerevisiae cells expressing eGFP-tagged α-Syn, were further engineered to synthesize MG. The number of cells with fluorescent foci was assessed by fluorescence microscopy. Fluorescence spectroscopy and transmission electron microscopy were used to monitor fibril formation in vitro. RESULTS We observed a 3.3-fold reduction in the number of cells with α-Syn foci and mild attenuation of α-Syn-induced toxicity. Accordingly, sucrose gradient analysis confirmed a clear reduction in the size-range of α-Syn species in the cells. MG did not affect the expression levels of α-Syn or its degradation rate. Moreover, MG did not induce molecular chaperones (Hsp104, Hsp70 and Hsp40), suggesting the implication of other mechanisms for α-Syn stabilization. MG also inhibited α-Syn fibrillation in vitro. CONCLUSIONS MG acts as a chemical chaperone and the stabilization mechanism involves direct solute/protein interactions. GENERAL SIGNIFICANCE This is the first demonstration of the anti-aggregating ability of MG in the intracellular milieu. The work shows that MG is a good candidate to inspire the development of new drugs for protein-misfolding diseases.


Journal of Bacteriology | 2010

Two Alternative Pathways for the Synthesis of the Rare Compatible Solute Mannosylglucosylglycerate in Petrotoga mobilis

Chantal Fernandes; Vitor Mendes; Joana Costa; Nuno Empadinhas; Carla D. Jorge; Pedro Lamosa; Helena Santos; Milton S. da Costa

The compatible solute mannosylglucosylglycerate (MGG), recently identified in Petrotoga miotherma, also accumulates in Petrotoga mobilis in response to hyperosmotic conditions and supraoptimal growth temperatures. Two functionally connected genes encoding a glucosyl-3-phosphoglycerate synthase (GpgS) and an unknown glycosyltransferase (gene Pmob_1143), which we functionally characterized as a mannosylglucosyl-3-phosphoglycerate synthase and designated MggA, were identified in the genome of Ptg. mobilis. This enzyme used the product of GpgS, glucosyl-3-phosphoglycerate (GPG), as well as GDP-mannose to produce mannosylglucosyl-3-phosphoglycerate (MGPG), the phosphorylated precursor of MGG. The MGPG dephosphorylation was determined in cell extracts, and the native enzyme was partially purified and characterized. Surprisingly, a gene encoding a putative glucosylglycerate synthase (Ggs) was also identified in the genome of Ptg. mobilis, and an active Ggs capable of producing glucosylglycerate (GG) from ADP-glucose and d-glycerate was detected in cell extracts and the recombinant enzyme was characterized, as well. Since GG has never been identified in this organism nor was it a substrate for the MggA, we anticipated the existence of a nonphosphorylating pathway for MGG synthesis. We putatively identified the corresponding gene, whose product had some sequence homology with MggA, but it was not possible to recombinantly express a functional enzyme from Ptg. mobilis, which we named mannosylglucosylglycerate synthase (MggS). In turn, a homologous gene from Thermotoga maritima was successfully expressed, and the synthesis of MGG was confirmed from GDP-mannose and GG. Based on the measurements of the relevant enzyme activities in cell extracts and on the functional characterization of the key enzymes, we propose two alternative pathways for the synthesis of the rare compatible solute MGG in Ptg. mobilis.


Nature Communications | 2015

Structural basis for phosphatidylinositol-phosphate biosynthesis.

Oliver B. Clarke; David Tomasek; Carla D. Jorge; Meagan Belcher Dufrisne; Minah Kim; Surajit Banerjee; Kanagalaghatta R. Rajashankar; Lawrence Shapiro; Wayne A. Hendrickson; Helena Santos; Filippo Mancia

Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.


Extremophiles | 2014

Mannosylglycerate: structural analysis of biosynthesis and evolutionary history

Nuno Borges; Carla D. Jorge; Luís G. Gonçalves; Susana Gonçalves; Pedro M. Matias; Helena Santos

Halophilic and halotolerant microorganisms adapted to thrive in hot environments accumulate compatible solutes that usually have a negative charge either associated with a carboxylic group or a phosphodiester unit. Mannosylglycerate (MG) has been detected in several members of (hyper)thermophilic bacteria and archaea, in which it responds primarily to osmotic stress. The outstanding ability of MG to stabilize protein structure in vitro as well as in vivo has been convincingly demonstrated. These findings led to an increasingly supported link between MG and microbial adaptation to high temperature. However, the accumulation of MG in many red algae has been known for a long time, and the peculiar distribution of MG in such distant lineages was intriguing. Knowledge on the biosynthetic machinery together with the rapid expansion of genome databases allowed for structural and phylogenetic analyses and provided insight into the distribution of MG. The two pathways for MG synthesis have distinct evolutionary histories and physiological roles: in red algae MG is synthesised exclusively via the single-step pathway and most probably is unrelated with stress protection. In contrast, the two-step pathway is strongly associated with osmoadaptation in (hyper)thermophilic prokaryotes. The phylogenetic analysis of the two-step pathway also reveals a second cluster composed of fungi and mesophilic bacteria, but MG has not been demonstrated in members of this cluster; we propose that the synthase is part of a more complex pathway directed at the synthesis of yet unknown molecules containing the mannosyl-glyceryl unit.


Environmental Microbiology | 2015

A novel pathway for the synthesis of inositol phospholipids uses cytidine diphosphate (CDP)-inositol as donor of the polar head group

Carla D. Jorge; Nuno Borges; Helena Santos

We describe a novel biosynthetic pathway for glycerophosphoinositides in Rhodothermus marinus in which inositol is activated by cytidine triphosphate (CTP); this is unlike all known pathways that involve activation of the lipid group instead. This work was motivated by the detection in the R. marinus genome of a gene with high similarity to CTP:L-myo-inositol-1-phosphate cytidylyltransferase, the enzyme that synthesizes cytidine diphosphate (CDP)-inositol, a metabolite only known in the synthesis of di-myo-inositol phosphate. However, this solute is absent in R. marinus. The fate of radiolabelled CDP-inositol was investigated in cell extracts to reveal that radioactive inositol was incorporated into the chloroform-soluble fraction. Mass spectrometry showed that the major lipid product has a molecular mass of 810 Da and contains inositol phosphate and alkyl chains attached to glycerol by ether bonds. The occurrence of ether-linked lipids is rare in bacteria and has not been described previously in R. marinus. The relevant synthase was identified by functional expression of the candidate gene in Escherichia coli. The enzyme catalyses the transfer of L-myo-inositol-1-phosphate from CDP-inositol to dialkylether glycerol yielding dialkylether glycerophosphoinositol. Database searching showed homologous proteins in two bacterial classes, Sphingobacteria and Alphaproteobacteria. This is the first report of the involvement of CDP-inositol in phospholipid synthesis.


Journal of Photochemistry and Photobiology B-biology | 2016

Earliest events in α-synuclein fibrillation probed with the fluorescence of intrinsic tyrosines

Marco A. Saraiva; Carla D. Jorge; Helena Santos; António L. Maçanita

The fluorescence of the four tyrosines of α-synuclein (Syn) was used for probing the earliest events preceding the fibrillation of Syn, during the onset of the so-called lag-time of fibrillation. Steady-state fluorescence experiments revealed an increase in the fluorescence intensity (FI) for Syn solutions at pH values 3 and 2, in comparison with pH7, and fluorescence decays indicated that the FI increase did not result from suppression of excited-state proton transfer from the tyrosines to aspartates and glutamates, exposure of tyrosines to more hydrophobic environments, or reduction of homo-energy transfer. Instead, the FI increase was due to changes in the population of the tyrosine rotamers at low pH values. Stopped-flow experiments (pH-jumps) showed that the FI enhancement involves two processes: a fast (sub-7 ms) intramolecular (concentration-independent) process, which we assign to the protein collapse at low pH, and a slower intermolecular (concentration-dependent) process of protein dimerization/oligomerization, starting at 4-10s after acidification. To the best of our knowledge, this is the first work on the experimental detection of these earliest processes in the fibrillation of Syn.


Extremophiles | 2016

Potential applications of stress solutes from extremophiles in protein folding diseases and healthcare

Carla D. Jorge; Nuno Borges; Irina Bagyan; Andreas Bilstein; Helena Santos

Protein misfolding, aggregation and deposition in the brain, in the form of amyloid, are implicated in the etiology of several neurodegenerative disorders, such as Alzheimer’s, Parkinson’s and prion diseases. Drugs available on the market reduce the symptoms, but they are not a cure. Therefore, it is urgent to identify promising targets and develop effective drugs. Preservation of protein native conformation and/or inhibition of protein aggregation seem pertinent targets for drug development. Several studies have shown that organic solutes, produced by extremophilic microorganisms in response to osmotic and/or heat stress, prevent denaturation and aggregation of model proteins. Among these stress solutes, mannosylglycerate, mannosylglyceramide, di-myo-inositol phosphate, diglycerol phosphate and ectoine are effective in preventing amyloid formation by Alzheimer’s Aβ peptide and/or α-synuclein in vitro. Moreover, mannosylglycerate is a potent inhibitor of Aβ and α-synuclein aggregation in living cells, and mannosylglyceramide and ectoine inhibit aggregation and reduce prion peptide-induced toxicity in human cells. This review focuses on the efficacy of stress solutes from hyper/thermophiles and ectoines to prevent amyloid formation in vitro and in vivo and their potential application in drug development against protein misfolding diseases. Current and envisaged applications of these extremolytes in neurodegenerative diseases and healthcare will also be addressed.


Journal of Bacteriology | 2008

Role of Periplasmic Trehalase in Uptake of Trehalose by the Thermophilic Bacterium Rhodothermus marinus

Carla D. Jorge; Luís L. Fonseca; Winfried Boos; Helena Santos

Trehalose uptake at 65 degrees C in Rhodothermus marinus was characterized. The profile of trehalose uptake as a function of concentration showed two distinct types of saturation kinetics, and the analysis of the data was complicated by the activity of a periplasmic trehalase. The kinetic parameters of this enzyme determined in whole cells were as follows: Km = 156 +/- 11 microM and Vmax = 21.2 +/- 0.4 nmol/min/mg of total protein. Therefore, trehalose could be acted upon by this periplasmic activity, yielding glucose that subsequently entered the cell via the glucose uptake system, which was also characterized. To distinguish the several contributions in this intricate system, a mathematical model was developed that took into account the experimental kinetic parameters for trehalase, trehalose transport, glucose transport, competition data with trehalose, glucose, and palatinose, and measurements of glucose diffusion out of the periplasm. It was concluded that R. marinus has distinct transport systems for trehalose and glucose; moreover, the experimental data fit perfectly with a model considering a high-affinity, low-capacity transport system for trehalose (Km = 0.11 +/- 0.03 microM and Vmax = 0.39 +/- 0.02 nmol/min/mg of protein) and a glucose transporter with moderate affinity and capacity (Km = 46 +/- 3 microM and Vmax = 48 +/- 1 nmol/min/mg of protein). The contribution of the trehalose transporter is important only in trehalose-poor environments (trehalose concentrations up to 6 microM); at higher concentrations trehalose is assimilated primarily via trehalase and the glucose transport system. Trehalose uptake was constitutive, but the activity decreased 60% in response to osmotic stress. The nature of the trehalose transporter and the physiological relevance of these findings are discussed.


Extremophiles | 2007

A highly thermostable trehalase from the thermophilic bacterium Rhodothermus marinus

Carla D. Jorge; Maria Manuel Sampaio; Gudmundur O. Hreggvidsson; Jakob K. Kristjánson; Helena Santos

Collaboration


Dive into the Carla D. Jorge's collaboration.

Top Co-Authors

Avatar

Helena Santos

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Nuno Borges

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro Lamosa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge