Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carla E. Giacomelli is active.

Publication


Featured researches published by Carla E. Giacomelli.


Journal of Colloid and Interface Science | 2009

EDTA modified LDHs as Cu2+ scavengers: removal kinetics and sorbent stability.

Ricardo Rojas; M. Rosario Perez; Eustaquio M. Erro; Patricia I. Ortiz; M.A. Ulibarri; Carla E. Giacomelli

EDTA modified layered double hydroxides (LDHs) were investigated as potential sorbents to remediate heavy metals pollution. The polidentate ligand was introduced by an exchange method in a Zn-Al-LDH, which takes place with partial erosion of the layers, causing the intercalation of [Zn(EDTA)](2-) complex instead of the ligand. [Cu(H(2)O)(6)](2+) cation was selected as a model cation to study the uptake mechanism, exploring the elimination kinetics from the first minutes up to the steady state. A flow injection analysis system coupled to an amperometric detector (FIA-AM) was applied to perform fast and reliable [Cu(H(2)O)(6)](2+) determinations in monodisperse solid-aqueous solution systems. Furthermore, the sorbent stability was determined as a function of the pH and the nitrate concentration. The [Cu(H(2)O)(6)](2+) elimination is produced by an exchange reaction with [Zn(EDTA)](2-) anions placed either in the solid interlayer or in the aqueous solution, this last being released from the sorbent. Additional [Cu(H(2)O)(6)](2+) removal is produced by Cu(OH)(2) precipitation at high copper concentrations due to the LDHs high pH buffering capacity. The sorbent removes [Cu(H(2)O)(6)](2+) with high affinity in a wide concentration range. The elimination process reaches equilibrium in less than 30 min and leaves metal cation concentrations lower than 0.05 ppm in the supernatants.


Analytical Chemistry | 2009

Interaction of D-Amino Acid Oxidase with Carbon Nanotubes: Implications in the Design of Biosensors

Maria F. Mora; Carla E. Giacomelli; Carlos D. Garcia

We have investigated the interaction of d-amino acid oxidase (DAAO) with single-walled carbon nanotubes (CNT) by spectroscopic ellipsometry. Dynamic adsorption experiments were performed at different experimental conditions. In addition, the activity of the enzyme adsorbed at different conditions was studied. Our results indicate that DAAO can be adsorbed to CNT at different pH values and concentrations by a combination of hydrophobic and electrostatic interactions. Considering that the highest enzymatic activity was obtained by adsorbing the protein at pH 5.7 and 0.1 mg x mL(-1), our results indicate that DAAO can adopt multiple orientations on the surface, which are ultimately responsible for significant differences in catalytic activity.


Journal of Colloid and Interface Science | 2010

Dissolution kinetics and mechanism of Mg–Al layered double hydroxides: A simple approach to describe drug release in acid media

Mara L. Parello; Ricardo Rojas; Carla E. Giacomelli

Layered double hydroxides (LDHs) weathering in acidic media is one of the main features that affects their applications in drug delivery systems. In this work, the dissolution kinetics of biocompatible Mg-Al LDHs was studied at different initial pH values and solid concentrations using a simple and fast experimental method that coupled flow injection analysis and amperometric detection. A carbonate intercalated sample was used to determine the controlling step of the process and the dissolution mechanism. Finally, the study was extended to an ibuprofen intercalated LDH. The obtained results showed that the weathering process was mainly controlled by the exposed area and surface reactivity of LDHs particles. The dissolution mechanism at the particle surface was described in two steps: fast formation of surface reactive sites by hydroxyl group protonation and slow detachment of metal ions from surface. At strongly acidic conditions, the reaction rate was pH dependent due to the equilibrium between protonated (active) and deprotonated (inactive) hydroxyl groups. On the other hand, at mildly acidic conditions, the dissolution behavior was also ruled by the equilibrium attained between the particle surface reactive sites and the dissolved species. LDHs solubility and dissolution rate presented strong dependence with the interlayer anion. The ibuprofen intercalated sample was more soluble and more rapidly dissolved than the carbonate intercalated one in acetic/acetate buffer. On the other hand, the dissolution mechanism was invariant with the interlayer anion.


Analytical Biochemistry | 2011

Infrared study of trifluoroacetic acid unpurified synthetic peptides in aqueous solution: trifluoroacetic acid removal and band assignment.

Laura E. Valenti; Maximiliano Burgos Paci; Carlos P. De Pauli; Carla E. Giacomelli

Synthetic peptide or protein samples are mostly unpurified with trifluoroacetic acid (TFA) used during the synthesis procedure, which strongly interferes with structure determination by infrared (IR) spectroscopy. The aim of this work was to propose a simple strategy to remove TFA contribution from attenuated total reflection (ATR)-IR spectra of the hexahistidine peptide (His6) in aqueous solution to study the conformation of this synthetic peptide without previous purification. Such a strategy is based on the subtraction mode widely employed to remove water contribution, and it is tested with TFA unpurified histidine as a model system. The subtraction is based on eliminating the strong TFA bands at 1147 and 1200cm(-1) by applying a scaling factor (as in buffer correction). The proposed modes represent excellent strategies that do not modify spectral features, and they provide reliable routines to obtain the synthetic peptide spectrum without TFA contribution. The conformational information from the corrected spectra at different pH values is deduced from semiempirical calculated IR spectra of different His6 conformers. The spectral features and the band positions of the corrected spectrum suggest that the peptide molecules mainly adopt an intermolecular β-sheet structure.


Colloids and Surfaces B: Biointerfaces | 2015

Unaffected features of BSA stabilized Ag nanoparticles after storage and reconstitution in biological relevant media.

Laura E. Valenti; Carla E. Giacomelli

Silver-coated orthopedic implants and silver composite materials have been proposed to produce local biocidal activity at low dose to reduce post-surgery infection that remains one of the major contributions to the patient morbidity. This work presents the synthesis combined with the characterization, colloidal stability in biological relevant media, antimicrobial activity and handling properties of silver nanoparticles (Ag-NP) before and after freeze dry and storage. The nanomaterial was synthesized in aqueous solution with simple, reproducible and low-cost strategies using bovine serum albumin (BSA) as the stabilizing agent. Ag-NP were characterized by means of the size distribution and morphology (UV-vis spectra, dynamic light scattering measurements and TEM images), charge as a function of the pH (zeta potential measurements) and colloidal stability in biological relevant media (UV-vis spectra and dynamic light scattering measurements). Further, the interactions between the protein and Ag-NP were evaluated by surface enhanced Raman spectroscopy (SERS) and the antimicrobial activity was tested with two bacteria strains (namely Staphylococcus aureus and Staphylococcus epidermidis) mainly present in the infections caused by implants and prosthesis in orthopedic surgery. Finally, the Ag-NP dispersed in aqueous solution were dried and stored as long-lasting powders that were easily reconstituted without losing their stability and antimicrobial properties. The proposed methods to stabilize Ag-NP not only produce stable dispersions in media of biological relevance but also long-lasting powders with optimal antimicrobial activity in the nanomolar range. This level is much lower than the cytotoxicity determined in vitro on osteoblasts, osteoclasts and osteoarthritic chondrocytes. The synthesized Ag-NP can be incorporated as additive of biomaterials or pharmaceutical products to confer antimicrobial activity in a powdered form in different formulations, dispersed in aqueous and non-aqueous solutions or coated on the surface of different materials.


Journal of Materials Chemistry B | 2015

Size-tunable LDH–protein hybrids toward the optimization of drug nanocarriers

Ricardo Rojas; Carla E. Giacomelli

Layered double hydroxides (LDHs) are extensively investigated as drug nanocarriers due to their anion exchange properties and potential capacity to achieve enhanced cellular trafficking and targeted delivery. In this work, LDH-protein hybrids with controlled particle size were obtained by modulation of the charge and hydrophobicity of LDH matrixes. In order to do that, bovine serum albumin (BSA) adsorption was studied in LDH matrixes intercalated with chloride and dodecylsulfate (DS-) in different ratios and its dependence on pH and ionic strength was determined. Positively charged LDH-Cl matrixes in aqueous solution changed from micro- to nano-size when adsorbing BSA molecules at pH values higher than the isoelectric point of the protein. On the other hand, the low BSA hybridization with a negatively charged LDH-DS matrix was not enough to reduce its particle size. However, a fine tuning of the physicochemical properties of the LDH-Cl matrix by controlled DS- incorporation and pH and ionic strength conditions allowed LDH-BSA nanohybrids to be partially intercalated with the surfactant that exhibited colloidal stability at high ionic strength (similar to that of biological fluids).


Colloids and Surfaces B: Biointerfaces | 2014

Surface coverage dictates the surface bio-activity of d-amino acid oxidase

Elisa Herrera; Carla E. Giacomelli

This work presents a systematic study on the relationship between the adsorption mechanism and the surface bio-activity of D-amino acid oxidase (pkDAAO). This rational approach is based on measuring the characteristic filling and relaxation times under different experimental conditions. With such a goal, real-time adsorption-desorption experiments at different degrees of surface coverage were performed tuning the electrostatic and hydrophobic interactions by changing the pH condition for the adsorption and the substrate properties (silica or gold). Surface bio-activity was measured in situ by amperometry using the bio-functional surface as the working electrode and ex situ by spectrophotometry. On both solid substrates, pkDAAO adsorption is a transport-controlled process, even under unfavorable electrostatic interactions (charged protein and substrate with the same sign) due to the high percentage of basic amino acids in the enzyme. On silica, the relaxation step is electrostatic in nature and occurs in the same time-scale as filling the surface when the substrate and the enzyme are oppositely charged at low surface coverage. Under unfavorable electrostatic conditions, the relaxation (if any) occurs at long time. Accordingly, the bio-activity of the native pkDAAO is preserved at any surface coverage. On gold, this step is driven by hydrophobic interactions (pH-independent) and the surface bio-activity is highly dependent on the degree of surface coverage. Under these conditions, the surface bio-activity is preserved only at high surfaces coverage. Our results clearly indicate that pkDAAO bio-functionalized surfaces cannot be coupled to amperometry because the analyte interferes the electrochemical signal. However, this simple bio-functionalized strategy can be joined to other detection methods.


IEEE Latin America Transactions | 2013

Evaluation of Impedance Spectroscopy as a Transduction Method for Bacterial Biosensors

M. L. López Rodriguez; Rossana E. Madrid; Carla E. Giacomelli

Biosensors are simple, feasible and cost-effective devices where biological specificity and selectivity, and electronic miniaturization are combined. Degrading microorganisms, such as the M7 species of Streptomyces genus, can specifically be used as biorecognition element, for lindane detection and quantification. Furthermore, electrochemical impedance spectroscopy is a non-destructive technique that allows evaluating bacterial activity by measuring conductivity changes in a culture medium. In this work, instrumental conditions were optimized to apply this method as transduction principle in bacterial biosensors. By means of electrochemical impedance spectroscopy, concentrations of chloride ions close to the environmental lindane values were measured. This is a suitable, simple and economical technique for use as a transduction method in biorecognition devices for organochlorine pesticides detection, particularly lindane.


Colloids and Surfaces B: Biointerfaces | 2013

Driving forces for the adsorption of a His-tag Chagas antigen. A rational approach to design bio-functional surfaces.

Laura E. Valenti; Andrea M. Smania; Carlos P. De Pauli; Carla E. Giacomelli

In order to rationally design a bio-functional surface based on the adsorption of a His-tag antigen, three requirements have to be considered: the bio-recognition element, the driving forces for the adsorption process and the detection mode of the bio-recognition event. This work is focused on the study of the adsorption mechanism of the His-tag H49 Chagas antigen on Ni(II) modified substrates. In order to construct the bio-functional surface, the gen of the H49 Chagas antigen was modified to incorporate His6 moiety at the N-terminal (His6-H49). Then, its physical adsorption and bio-affinity interaction with the solid substrate was studied by reflectometry. Besides His-Ni(II) bio-affinity interactions, His6-H49 was also physically adsorbed on Ni(II) modified substrates, leading to randomly oriented antigens. These loosely attached bio-molecules were partially removed using conditions of electrostatic repulsion. On the other hand, bio-affinity interactions, resulting in site-oriented molecules on the substrate, were only removable by specific competitors for Ni(II) surface sites. Finally, the surface bio-activity was determined from the peak separations of voltammetry waves due to the change of the electron transfer kinetics of a redox probe through the bio-functional surface (working electrode).


Journal of Nanoparticle Research | 2017

Stability of silver nanoparticles: agglomeration and oxidation in biological relevant conditions

Laura E. Valenti; Carla E. Giacomelli

Silver nanoparticles (Ag-NP) are the most used nanomaterial in consumer products due to the intrinsic antimicrobial capacity of silver. However, Ag-NP may be also harmful to algae, aquatic species, mammalian cells, and higher plants because both Ag+ and nanoparticles are responsible of cell damages. The oxidative dissolution of Ag-NP would proceed to completion under oxic conditions, but the rate and extent of the dissolution depend on several factors. This work correlates the effect of the capping agent (albumin and citrate) with the stability of Ag-NP towards agglomeration in simulated body fluid (SBF) and oxidation in the presence of ROS species (H2O2). Capping provides colloidal stability only through electrostatic means, whereas albumin acts as bulky ligands giving steric and electrostatic repulsion, inhibiting the agglomeration in SBF. However, citrate capping protects Ag-NP from dissolution to a major extent than albumin does because of its reducing power. Moreover, citrate in solution minimizes the oxidation of albumin-coated Ag-NP even after long incubation times. H2O2-induced dissolution proceeds to completion with Ag-NP incubated in SBF, while incubation in citrate leads to an incomplete oxidation. In short, albumin is an excellent capping agent to minimize Ag-NP agglomeration whereas citrate provides a mild-reductive medium that prevents dissolution in biological relevant media as well as in the presence of ROS species. These results provide insight into how the surface properties and media composition affect the release of Ag+ from Ag-NP, related to the cell toxicity and relevant to the storage and lifetime of silver-containing nanomaterials.

Collaboration


Dive into the Carla E. Giacomelli's collaboration.

Top Co-Authors

Avatar

Carlos P. De Pauli

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Ricardo Rojas

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Laura E. Valenti

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Marcelo J. Avena

Universidad Nacional del Sur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rossana E. Madrid

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar

Willem Norde

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Elisa Herrera

National University of Cordoba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia I. Ortiz

National University of Cordoba

View shared research outputs
Researchain Logo
Decentralizing Knowledge