Carla Galinha
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carla Galinha.
Cell | 2004
Mitsuhiro Aida; Dimitris Beis; Renze Heidstra; Viola Willemsen; Ikram Blilou; Carla Galinha; Laurent Nussaume; Yoo-Sun Noh; Richard M. Amasino; Ben Scheres
A small organizing center, the quiescent center (QC), maintains stem cells in the Arabidopsis root and defines the stem cell niche. The phytohormone auxin influences the position of this niche by an unknown mechanism. Here, we identify the PLETHORA1 (PLT1) and PLT2 genes encoding AP2 class putative transcription factors, which are essential for QC specification and stem cell activity. The PLT genes are transcribed in response to auxin accumulation and are dependent on auxin response transcription factors. Distal PLT transcript accumulation creates an overlap with the radial expression domains of SHORT-ROOT and SCARECROW, providing positional information for the stem cell niche. Furthermore, the PLT genes are activated in the basal embryo region that gives rise to hypocotyl, root, and root stem cells and, when ectopically expressed, transform apical regions to these identities. Thus, the PLT genes are key effectors for establishment of the stem cell niche during embryonic pattern formation.
Nature | 2007
Carla Galinha; Hugo Hofhuis; Marijn Luijten; Viola Willemsen; Ikram Blilou; Renze Heidstra; Ben Scheres
Factors with a graded distribution can program fields of cells in a dose-dependent manner, but no evidence has hitherto surfaced for such mechanisms in plants. In the Arabidopsis thaliana root, two PLETHORA (PLT) genes encoding AP2-domain transcription factors have been shown to maintain the activity of stem cells. Here we show that a clade of four PLT homologues is necessary for root formation. Promoter activity and protein fusions of PLT homologues display gradient distributions with maxima in the stem cell area. PLT activities are largely additive and dosage dependent. High levels of PLT activity promote stem cell identity and maintenance; lower levels promote mitotic activity of stem cell daughters; and further reduction in levels is required for cell differentiation. Our findings indicate that PLT protein dosage is translated into distinct cellular responses.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Gemma Bilsborough; Adam Runions; Michalis Barkoulas; Huw W Jenkins; Alice Hasson; Carla Galinha; Patrick Laufs; Angela Hay; Przemyslaw Prusinkiewicz; Miltos Tsiantis
Biological shapes are often produced by the iterative generation of repeated units. The mechanistic basis of such iteration is an area of intense investigation. Leaf development in the model plant Arabidopsis is one such example where the repeated generation of leaf margin protrusions, termed serrations, is a key feature of final shape. However, the regulatory logic underlying this process is unclear. Here, we use a combination of developmental genetics and computational modeling to show that serration development is the morphological read-out of a spatially distributed regulatory mechanism, which creates interspersed activity peaks of the growth-promoting hormone auxin and the CUP-SHAPED COTYLEDON2 (CUC2) transcription factor. This mechanism operates at the growing leaf margin via a regulatory module consisting of two feedback loops working in concert. The first loop relates the transport of auxin to its own distribution, via polar membrane localization of the PINFORMED1 (PIN1) efflux transporter. This loop captures the potential of auxin to generate self-organizing patterns in diverse developmental contexts. In the second loop, CUC2 promotes the generation of PIN1-dependent auxin activity maxima while auxin represses CUC2 expression. This CUC2-dependent loop regulates activity of the conserved auxin efflux module in leaf margins to generate stable serration patterns. Conceptualizing leaf margin development via this mechanism also helps to explain how other developmental regulators influence leaf shape.
Science | 2014
Daniela Vlad; Daniel Kierzkowski; M. I. Rast; Francesco Vuolo; R. Dello Ioio; Carla Galinha; Xiangchao Gan; Mohsen Hajheidari; Angela Hay; Richard S. Smith; Peter Huijser; C. D. Bailey; Miltos Tsiantis
The evolutionary trajectory leading to crucifer leaf shape in Cardamine hirsuta plants is elucidated. In this work, we investigate morphological differences between Arabidopsis thaliana, which has simple leaves, and its relative Cardamine hirsuta, which has dissected leaves comprising distinct leaflets. With the use of genetics, interspecific gene transfers, and time-lapse imaging, we show that leaflet development requires the REDUCED COMPLEXITY (RCO) homeodomain protein. RCO functions specifically in leaves, where it sculpts developing leaflets by repressing growth at their flanks. RCO evolved in the Brassicaceae family through gene duplication and was lost in A. thaliana, contributing to leaf simplification in this species. Species-specific RCO action with respect to its paralog results from its distinct gene expression pattern in the leaf base. Thus, regulatory evolution coupled with gene duplication and loss generated leaf shape diversity by modifying local growth patterns during organogenesis. Developmental Complexity Although related, the plants Arabidopsis thaliana and Cardamine hirsuta have different sorts of leaves—one, a rather plain oval and the other, a complicated multipart construction. Comparing the development of the two leaf types, Vlad et al. (p. 780) uncovered a gene that regulates developmental growth. The C. hirsuta gene encoding the REDUCED COMPLEXITY (RCO) homeodomain protein arose through gene duplication and neofunctionalization, but was lost in the A. thaliana lineage. In C. hirsuta, RCO suppresses growth in domains around the perimeter of the developing leaf, yielding complex-shaped leaves. A. thaliana, lacking RCO, produces simple leaves. When RCO was expressed in A. thaliana, the leaves became more complex. Thus, the capacity to produce complex leaves remains, despite loss of the initiator.
Current Biology | 2009
Stephen P. Grigg; Carla Galinha; Noortje Kornet; Claudia Canales; Ben Scheres; Miltos Tsiantis
Development of seed plant embryos is polarized along the apical-basal axis. This polarization occurs in the absence of cell migration and culminates in the establishment of two distinct pluripotent cell populations: the shoot apical meristem (SAM) and root meristem (RM), which postembryonically give rise to the entire shoot and root systems of the plant. The acquisition of genetic pathways that delimit root from shoot during embryogenesis must have played a pivotal role during land plant evolution because roots evolved after shoots in ancestral vascular plants and may be shoot-derived organs. However, such pathways are very poorly understood. Here we show that RM establishment in the model plant Arabidopsis thaliana requires apical confinement of the Class III HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP III) proteins PHABULOSA (PHB) and PHAVOLUTA (PHV), which direct both SAM development and shoot lateral organ polarity. Failure to restrict PHB and PHV expression apically via a microRNA-dependent pathway prevents correct elaboration of the embryonic root development program and results in embryo lethality. As such, repression of a fundamental shoot development pathway is essential for correct root development. Additionally, our data suggest that a single patterning process, based on HD-ZIP III repression, mediates both apical-basal and radial polarity in the embryo and lateral organ polarity in the shoot.
Current Biology | 2011
Kalika Prasad; Stephen P. Grigg; Michalis Barkoulas; Ram Kishor Yadav; Gabino F. Sanchez-Perez; Violaine Pinon; Ikram Blilou; Hugo Hofhuis; Pankaj Dhonukshe; Carla Galinha; Ari Pekka Mähönen; Wally H. Müller; Smita Raman; Arie J. Verkleij; Berend Snel; G. Venugopala Reddy; Miltos Tsiantis; Ben Scheres
The pattern of plant organ initiation at the shoot apical meristem (SAM), termed phyllotaxis, displays regularities that have long intrigued botanists and mathematicians alike. In the SAM, the central zone (CZ) contains a population of stem cells that replenish the surrounding peripheral zone (PZ), where organs are generated in regular patterns. These patterns differ between species and may change in response to developmental or environmental cues [1]. Expression analysis of auxin efflux facilitators of the PIN-FORMED (PIN) family combined with modeling of auxin transport has indicated that organ initiation is associated with intracellular polarization of PIN proteins and auxin accumulation [2-10]. However, regulators that modulate PIN activity to determine phyllotactic patterns have hitherto been unknown. Here we reveal that three redundantly acting PLETHORA (PLT)-like AP2 domain transcription factors control shoot organ positioning in the model plant Arabidopsis thaliana. Loss of PLT3, PLT5, and PLT7 function leads to nonrandom, metastable changes in phyllotaxis. Phyllotactic changes in plt3plt5plt7 mutants are largely attributable to misregulation of PIN1 and can be recapitulated by reducing PIN1 dosage, revealing that PLT proteins are key regulators of PIN1 activity in control of phyllotaxis.
Journal of Plant Research | 2010
Claudia Canales; Michalis Barkoulas; Carla Galinha; Miltos Tsiantis
Cardamine hirsuta, a small crucifer closely related to the model organism Arabidopsis thaliana, offers high genetic tractability and has emerged as a powerful system for studying the genetic basis for diversification of plant form. Contrary to A. thaliana, which has simple leaves, C. hirsuta produces dissected leaves divided into individual units called leaflets. Leaflet formation requires activity of Class I KNOTTED1-like homeodomain (KNOX) proteins, which also promote function of the shoot apical meristem (SAM). In C. hirsuta, KNOX genes are expressed in the leaves whereas in A. thaliana their expression is confined to the SAM, and differences in expression arise through cis-regulatory divergence of KNOX regulation. KNOX activity in C. hirsuta leaves delays the transition from proliferative growth to differentiation thus facilitating the generation of lateral growth axes that give rise to leaflets. These axes reflect the sequential generation of cell division foci across the leaf proximodistal axis in response to auxin activity maxima, which are generated by the PINFORMED1 (PIN1) auxin efflux carriers in a process that resembles organogenesis at the SAM. Delimitation of C. hirsuta leaflets also requires the activity of CUPSHAPEDCOTYLEDON (CUC) genes, which direct formation of organ boundaries at the SAM. These observations show how species-specific deployment of fundamental shoot development networks may have sculpted simple versus dissected leaf forms. These studies also illustrate how extending developmental genetic studies to morphologically divergent relatives of model organisms can greatly help elucidate the mechanisms underlying the evolution of form.
Seminars in Cell & Developmental Biology | 2009
Carla Galinha; Gemma Bilsborough; Miltos Tsiantis
Plant hormones are a group of chemically diverse molecules that control virtually all aspects of plant development. Classical plant hormones were identified many decades ago in physiology studies that addressed plant growth regulation. In recent years, biochemical and genetic approaches led to the identification of many molecular components that mediate hormone activity, such as hormone receptors and hormone-regulated genes. This has greatly contributed to the understanding of the mechanisms underlying hormone activity and highlighted the intricate crosstalk and integration of hormone signalling and developmental pathways. Here we review and discuss recent findings on how hormones regulate the activity of shoot and root apical meristems.
Current Opinion in Plant Biology | 2007
Michalis Barkoulas; Carla Galinha; Stephen P. Grigg; Miltos Tsiantis
Current Biology | 2012
Raffaele Dello Ioio; Carla Galinha; Alexander G. Fletcher; Stephen P. Grigg; Attila Molnar; Viola Willemsen; Ben Scheres; Sabrina Sabatini; David C. Baulcombe; Philip K. Maini; Miltos Tsiantis