Carla J.H. van der Kallen
Maastricht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carla J.H. van der Kallen.
Nature Genetics | 2017
Marc Jan Bonder; René Luijk; Daria V. Zhernakova; Matthijs Moed; Patrick Deelen; Martijn Vermaat; Maarten van Iterson; Freerk van Dijk; Michiel van Galen; Jan Bot; Roderick C. Slieker; P. Mila Jhamai; Michael Verbiest; H. Eka D. Suchiman; Marijn Verkerk; Ruud van der Breggen; Jeroen van Rooij; N. Lakenberg; Wibowo Arindrarto; Szymon M. Kielbasa; Iris Jonkers; Peter van ‘t Hof; Irene Nooren; Marian Beekman; Joris Deelen; Diana van Heemst; Alexandra Zhernakova; Ettje F. Tigchelaar; Morris A. Swertz; Albert Hofman
Most disease-associated genetic variants are noncoding, making it challenging to design experiments to understand their functional consequences. Identification of expression quantitative trait loci (eQTLs) has been a powerful approach to infer the downstream effects of disease-associated variants, but most of these variants remain unexplained. The analysis of DNA methylation, a key component of the epigenome, offers highly complementary data on the regulatory potential of genomic regions. Here we show that disease-associated variants have widespread effects on DNA methylation in trans that likely reflect differential occupancy of trans binding sites by cis-regulated transcription factors. Using multiple omics data sets from 3,841 Dutch individuals, we identified 1,907 established trait-associated SNPs that affect the methylation levels of 10,141 different CpG sites in trans (false discovery rate (FDR) < 0.05). These included SNPs that affect both the expression of a nearby transcription factor (such as NFKB1, CTCF and NKX2-3) and methylation of its respective binding site across the genome. Trans methylation QTLs effectively expose the downstream effects of disease-associated variants.
The Journal of Clinical Endocrinology and Metabolism | 2009
Katrien H.J. Gaens; Isabel Ferreira; Carla J.H. van der Kallen; Marleen M. J. van Greevenbroek; Ellen E. Blaak; Edith J. M. Feskens; Jacqueline M. Dekker; G. Nijpels; Robert J. Heine; Leen M. 't Hart; Philip G. de Groot; Coen D. A. Stehouwer; Casper G. Schalkwijk
OBJECTIVE The receptor for advanced glycation end products (RAGE)-ligand interaction has been linked to vascular complications. The family of soluble forms of RAGE (sRAGE) consists of splice variants and proteolytically cleaved and shed forms of RAGE. sRAGE may be a reflection of cell-bound RAGE. Because genetic variation in the RAGE gene may be associated with individual differences in sRAGE concentration and outcome, we investigated whether RAGE single-nucleotide polymorphisms (SNPs) were associated with circulating levels of sRAGE. METHODS Nine SNPs, covering the common RAGE gene variation, were genotyped in a Dutch cohort of subjects with normal glucose metabolism (n = 301), impaired glucose metabolism (n = 127), and type 2 diabetes mellitus (n = 146). We used linear regression analyses adjusted for age, sex, and glucose metabolism status to compare sRAGE levels across genotypes. RESULTS SNP rs2060700 (Gly82Ser) showed an association with sRAGE levels. Specifically, after adjustments for age, sex, and glucose metabolism, subjects with CT genotype had -527 pg/ml (95% confidence interval -724 to -330, P < 0.001) lower sRAGE levels compared with the CC genotype (age, sex, and glucose metabolism adjusted mean +/- SE values of 836 +/- 99 and 1369 +/- 26 pg/ml, respectively, P < 0.001). These results were confirmed in a subsample of a second cohort study of subjects with CT (n = 37) and CC genotype (n = 37). Immunoblotting using antibodies against amino acids 39-55 and 100-116 of RAGE also showed a similar decrease of sRAGE levels in the CT genotypes. No other SNPs showed an association with sRAGE levels. In addition, no associations between SNPs and the advanced glycation end products N(epsilon)-(carboxymethyl)lysine and N(epsilon)-(carboxyethyl)lysine were found. CONCLUSION The CC genotype of SNP rs2070600 (Gly82Ser) was strongly associated with higher sRAGE levels in a Dutch population. The mechanism by which Gly82Ser polymorphism alters the sRAGE levels remains to be elucidated.
Diabetes Care | 2013
Nick Wlazlo; Marleen M. J. van Greevenbroek; Isabel Ferreira; Eugene Jansen; Edith J. M. Feskens; Carla J.H. van der Kallen; Casper G. Schalkwijk; Bert Bravenboer; Coen D. A. Stehouwer
OBJECTIVE Adipocyte insulin resistance (IR) is a key feature early in the pathogenesis of type 2 diabetes mellitus (T2DM), and although scarce, data in the literature suggest a direct role for iron and iron metabolism–related factors in adipose tissue function and metabolism. Serum ferritin and transferrin were shown to be associated with muscle insulin resistance (IR) and T2DM, but little is known about the role of iron metabolism on adipose tissue. We therefore investigated whether markers of iron metabolism were associated with adipocyte IR and plasma adiponectin. RESEARCH DESIGN AND METHODS Serum ferritin, transferrin, total iron, non–transferrin-bound iron (NTBI), transferrin saturation, and plasma adiponectin were determined in 492 individuals. Adipocyte IR was defined by the product of fasting insulin and nonesterified fatty acids (NEFAs). Using linear regression analyses, we investigated the difference in adipocyte IR or adiponectin (in %) according to differences in iron metabolism markers. RESULTS Serum ferritin (β = 1.00% increase in adipocyte IR per 10 μg/L [95% CI 0.66–1.34]), transferrin (4.18% per 0.1 g/L [2.88–5.50]), total iron (1.36% per μmol/L [0.61–2.12]), and NTBI (5.14% per μmol/L [1.88–8.52]) were associated with adipocyte IR after adjustment for several covariates, including inflammatory markers. All markers of iron metabolism were also associated with NEFAs (all P < 0.01). In addition, ferritin and transferrin were inversely associated with adiponectin (both P < 0.01). CONCLUSIONS The observed associations of several markers of iron metabolism with adipocyte IR and adiponectin suggest that factors related to iron and iron metabolism may contribute to adipocyte IR early in the pathogenesis of T2DM.
The Journal of Clinical Endocrinology and Metabolism | 2013
Nordin M.J. Hanssen; L. Engelen; Isabel Ferreira; Jean Scheijen; M. Huijberts; Marleen M. van Greevenbroek; Carla J.H. van der Kallen; Jacqueline M. Dekker; G. Nijpels; Coen D. A. Stehouwer; Casper G. Schalkwijk
OBJECTIVE Experimental and histological data suggest a role for advanced glycation end products (AGEs) in cardiovascular disease (CVD), particularly in type 2 diabetes (T2DM). However, the epidemiological evidence of an adverse association between AGEs and CVD remains inconclusive. We therefore investigated, in individuals with various degrees of glucose metabolism, the associations of plasma AGEs with prevalent CVD. RESEARCH DESIGN AND METHODS We measured plasma levels of protein-bound N(ε)-(carboxymethyl)lysine (CML), N(ε)-(carboxyethyl)lysine (CEL), and pentosidine, in participants from two Dutch cohort studies (n = 1291, mean age 64.7 ± 8.3 years, 45% women), including 573 individuals with normal glucose metabolism, 304 with impaired glucose metabolism, and 414 with T2DM. In addition, we measured free CML, CEL, and 5-hydro-5-methylimidazolone in a subset of participants (n = 554). Data were analyzed with multiple logistic or linear regression analyses. RESULTS CEL (32 [interquartile range: 25-40] vs 28 [22-35] nmol/mmol lysine) and pentosidine (0.53 [0.43-0.67] vs 0.48 [0.40-0.59] nmol/mmol lysine) as well as free CEL (48 [39-62] vs 45 [36-56] nmol/L) and 5-hydro-5-methylimidazolone (141 [96-209] vs 116 [84-165] nmol/L) were higher in individuals with vs without CVD, whereas protein-bound CML was lower (33 [27-38] vs 34 [29-39] nmol/mmol lysine). However, these differences disappeared after adjustment for confounders. The associations did not differ consistently between individuals with and without T2DM. CONCLUSIONS We found no independent adverse associations of plasma AGEs with CVD in individuals with normal glucose metabolism, impaired glucose metabolism, and T2DM.
Pflügers Archiv: European Journal of Physiology | 2007
Ping Wang; Marleen M. J. van Greevenbroek; Freek G. Bouwman; Martijn C. G. J. Brouwers; Carla J.H. van der Kallen; Egbert F. Smit; Jaap Keijer; Edwin C. M. Mariman
Visfatin with the official gene name pre-B cell colony-enhancing factor 1 (PBEF) and the protein name nicotinamide phosphoribosyltransferase (NAMPT) is a recently discovered adipocyte-secreted protein that was shown by some to be associated with visceral fat and insulin resistance. To explore the link between PBEF/NAMPT/visfatin and lipid metabolism, we analyzed the relation of its plasma level with several parameters of adiposity, insulin resistance and the circulating blood lipid profile in a group of general population (n = 40) and a group of subjects who are genetically predisposed to insulin resistance and hyperlipidemia (n = 35). In both groups and pooled cohort, PBEF/NAMPT/visfatin lacked association with whole body adiposity, but correlated positively with HDL-cholesterol and negatively with triglycerides. The data suggested a negative correlation of the PBEF level with visceral fat and insulin resistance. But this negative correlation completely disappeared after adjustment for lipid profile. We concluded that circulating PBEF/NAMPT/visfatin level is an indicator of beneficial lipid profile in non-diabetic Caucasian subjects. The relation to lipid metabolism does not depend on visceral obesity and insulin resistance, but may be linked to its enzymatic function in NAD metabolism.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2014
Katrien H.J. Gaens; Gijs H. Goossens; Petra Niessen; Marleen M. J. van Greevenbroek; Carla J.H. van der Kallen; Hans W.M. Niessen; Sander S. Rensen; Wim A. Buurman; Jan Willem M. Greve; Ellen E. Blaak; Marc A. M. J. van Zandvoort; Angelika Bierhaus; Coen D. A. Stehouwer; Casper G. Schalkwijk
Objective—Dysregulation of inflammatory adipokines by the adipose tissue plays an important role in obesity-associated insulin resistance. Pathways leading to this dysregulation remain largely unknown. We hypothesized that the receptor for advanced glycation end products (RAGE) and the ligand N&egr;-(carboxymethyl)lysine (CML) are increased in adipose tissue and, moreover, that activation of the CML–RAGE axis plays an important role in obesity-associated inflammation and insulin resistance. Approach and Results—In this study, we observed a strong CML accumulation and increased expression of RAGE in adipose tissue in obesity. We confirmed in cultured human preadipocytes that adipogenesis is associated with increased levels of CML and RAGE. Moreover, CML induced a dysregulation of inflammatory adipokines in adipocytes via a RAGE-dependent pathway. To test the role of RAGE in obesity-associated inflammation further, we constructed an obese mouse model that is deficient for RAGE (ie, RAGE–/–/LeptrDb–/– mice). RAGE–/–/LeptrDb–/– mice displayed an improved inflammatory profile and glucose homeostasis when compared with RAGE+/+/LeptrDb–/– mice. In addition, CML was trapped in adipose tissue in RAGE+/+/LeptrDb–/– mice but not in RAGE–/–/LeptrDb–/–. RAGE-mediated trapping in adipose tissue provides a mechanism underlying CML accumulation in adipose tissue and explaining decreased CML plasma levels in obese subjects. Decreased CML plasma levels in obese individuals were strongly associated with insulin resistance. Conclusions—RAGE-mediated CML accumulation in adipose tissue and the activation of the CML–RAGE axis are important mechanisms involved in the dysregulation of adipokines in obesity, thereby contributing to the development of obesity-associated insulin resistance.
Apoptosis | 2009
Carla J.H. van der Kallen; Marleen M. J. van Greevenbroek; Coen D. A. Stehouwer; Casper G. Schalkwijk
Diabetes mellitus (DM) is a multifactorial chronic metabolic disease characterized by hyperglycaemia. Several different mechanisms have been implicated in the development of the disease, including endoplasmic reticulum (ER) stress. ER stress is increasingly acknowledged as an important mechanism in the development of DM, not only for β-cell loss but also for insulin resistance. Accumulating evidence suggests that ER stress-induced apoptosis may be an important mode of β-cell loss and therefore important in the development of diabetes. Recent data also suggest a role of ER stress-induced apoptosis in liver and adipose tissue in relation to diabetes, but more extensive studies on human adipocyte and hepatocyte (patho)physiology and ER stress are needed to identify the exact interactions between environmental signals, ER stress and apoptosis in these organs.
Nature Genetics | 2017
Daria V. Zhernakova; Patrick Deelen; Martijn Vermaat; Maarten van Iterson; Michiel van Galen; Wibowo Arindrarto; Peter van ‘t Hof; Hailiang Mei; Freerk van Dijk; Harm-Jan Westra; Marc Jan Bonder; Jeroen van Rooij; Marijn Verkerk; P. Mila Jhamai; Matthijs Moed; Szymon M. Kielbasa; Jan Bot; Irene Nooren; René Pool; Jenny van Dongen; Jouke J. Hottenga; Coen D. A. Stehouwer; Carla J.H. van der Kallen; Casper G. Schalkwijk; Alexandra Zhernakova; Yang Li; Ettje F. Tigchelaar; Niek de Klein; Marian Beekman; Joris Deelen
Genetic risk factors often localize to noncoding regions of the genome with unknown effects on disease etiology. Expression quantitative trait loci (eQTLs) help to explain the regulatory mechanisms underlying these genetic associations. Knowledge of the context that determines the nature and strength of eQTLs may help identify cell types relevant to pathophysiology and the regulatory networks underlying disease. Here we generated peripheral blood RNA–seq data from 2,116 unrelated individuals and systematically identified context-dependent eQTLs using a hypothesis-free strategy that does not require previous knowledge of the identity of the modifiers. Of the 23,060 significant cis-regulated genes (false discovery rate (FDR) ≤ 0.05), 2,743 (12%) showed context-dependent eQTL effects. The majority of these effects were influenced by cell type composition. A set of 145 cis-eQTLs depended on type I interferon signaling. Others were modulated by specific transcription factors binding to the eQTL SNPs.
Genome Biology | 2016
Koen F. Dekkers; Maarten van Iterson; Roderick C. Slieker; Matthijs Moed; Marc Jan Bonder; Michiel van Galen; Hailiang Mei; Daria V. Zhernakova; Leonard H. van den Berg; Joris Deelen; Jenny van Dongen; Diana van Heemst; Albert Hofman; Jouke J. Hottenga; Carla J.H. van der Kallen; Casper G. Schalkwijk; Coen D. A. Stehouwer; Ettje F. Tigchelaar; André G. Uitterlinden; Gonneke Willemsen; Alexandra Zhernakova; Lude Franke; Peter A. C. 't Hoen; Rick Jansen; Joyce B. J. van Meurs; Dorret I. Boomsma; Cornelia M. van Duijn; Marleen M. J. van Greevenbroek; Jan H. Veldink; Cisca Wijmenga
BackgroundCells can be primed by external stimuli to obtain a long-term epigenetic memory. We hypothesize that long-term exposure to elevated blood lipids can prime circulating immune cells through changes in DNA methylation, a process that may contribute to the development of atherosclerosis. To interrogate the causal relationship between triglyceride, low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol levels and genome-wide DNA methylation while excluding confounding and pleiotropy, we perform a stepwise Mendelian randomization analysis in whole blood of 3296 individuals.ResultsThis analysis shows that differential methylation is the consequence of inter-individual variation in blood lipid levels and not vice versa. Specifically, we observe an effect of triglycerides on DNA methylation at three CpGs, of LDL cholesterol at one CpG, and of HDL cholesterol at two CpGs using multivariable Mendelian randomization. Using RNA-seq data available for a large subset of individuals (N = 2044), DNA methylation of these six CpGs is associated with the expression of CPT1A and SREBF1 (for triglycerides), DHCR24 (for LDL cholesterol) and ABCG1 (for HDL cholesterol), which are all key regulators of lipid metabolism.ConclusionsOur analysis suggests a role for epigenetic priming in end-product feedback control of lipid metabolism and highlights Mendelian randomization as an effective tool to infer causal relationships in integrative genomics data.
Journal of Lipid Research | 2006
Martijn C. G. J. Brouwers; Rita M. Cantor; Naoko Kono; Jeong lim Yoon; Carla J.H. van der Kallen; Monique A.L. Bilderbeek-Beckers; Marleen M. J. van Greevenbroek; Aldons J. Lusis; Tjerk W.A. de Bruin
VLDL overproduction, a process that is driven by an excess amount of hepatic fat, is a well-documented feature of familial combined hyperlipidemia (FCHL). The aims of this study were to investigate whether fatty liver, measured with ultrasound and as plasma alanine aminotransferase (ALT) levels, develops against a genetic background in FCHL and to identify chromosomal loci that are linked to these traits. In total, 157 FCHL family members and 20 spouses participated in this study. Radiological evidence of fatty liver was more prevalent not only in FCHL probands (40%) but also in their relatives (35%) compared with spouses (15%) (P < 0.05). Heritability calculations revealed that 20–36% of the variability in ALT levels could be attributed to genetic factors. Nonparametric quantitative trait locus (QTL) analysis revealed three significant (P < 0.001) loci with either the ultrasound or the ALT trait in the male sample: 1q42.3, 7p12-21, and 22p13-q11; none was found in the female sample or the entire group. Of these QTLs, the 7p region was consistent over time, because reanalysis with ALT levels that were determined during a visit 5 years earlier yielded similar results. This study shows that fatty liver is a heritable aspect of FCHL. Replication of particularly the 7p region is awaited.