Carla M. D’Antonio
University of California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carla M. D’Antonio.
Biological Invasions | 2000
Montserrat Vilà; Ewald Weber; Carla M. D’Antonio
The increasing number of invasive exotic plant species in many regions and the continuing alteration of natural ecosystems by humans promote hybridization between previously allopatric species; among both native as well as between native and introduced species. We review the ecological factors and mechanisms that promote such hybridization events and their negative consequences on biological diversity. Plant invasions through hybridization may occur in four different ways: hybridization between native species, hybridization between an exotic species and a native congener, hybridization between two exotics and by the introduction and subsequent spread of hybrids. The main harmful genetic effect of such hybrids on native species is the loss of both genetic diversity and of locally adapted populations, such as rare and threatened species. The spread of aggressive hybrid taxa can reduce the growth of, or replace, native species. The main factor promoting the formation of hybrids is species dispersal promoted by humans. However, the success and spread of hybrids is increased by disturbance and fragmentation of habitats, thus overcoming natural crossing barriers, and range expansions due to human activity. There are differences in flowering, pollination and seed dispersal patterns between parental species and hybrids. Hybrid resistance to pathogens and herbivores may also enhance the success of hybrids. To predict the mechanisms and consequences of invasions mediated by hybridization, extensive data on hybrid ecology and biology are needed, as well as carefully designed field experiments focused on the comparative ecology of parental populations and hybrids.
Oecologia | 2005
Jeffrey D. Corbin; Meredith A. Thomsen; Todd E. Dawson; Carla M. D’Antonio
Plants in the Mediterranean climate region of California typically experience summer drought conditions, but correlations between zones of frequent coastal fog inundation and certain species’ distributions suggest that water inputs from fog may influence species composition in coastal habitats. We sampled the stable H and O isotope ratios of water in non-photosynthetic plant tissue from a variety of perennial grass species and soil in four sites in northern California in order to determine the proportion of water deriving from winter rains and fog during the summer. The relationship between H and O stable isotopes from our sample sites fell to the right of the local meteoric water line (LMWL) during the summer drought, providing evidence that evaporation of water from the soil had taken place prior to the uptake of water by vegetation. We developed a novel method to infer the isotope values of water before it was subjected to evaporation in which we used experimental data to calculate the slope of the δH versus δO line versus the LMWL. After accounting for evaporation, we then used a two-source mixing model to evaluate plant usage of fog water. The model indicated that 28–66% of the water taken up by plants via roots during the summer drought came from fog rather than residual soil water from winter rain. Fog use decreased as distance from the coast increased, and there were significant differences among species in the use of fog. Rather than consistent differences in fog use by species whose distributions are limited to the coast versus those with broader distributions, species responded individualistically to summer fog. We conclude that fogwater inputs can mitigate the summer drought in coastal California for many species, likely giving an advantage to species that can use it over species that cannot.
Nature | 2013
Stephanie G. Yelenik; Carla M. D’Antonio
Returning native species to habitats degraded by biological invasions is a critical conservation goal. A leading hypothesis poses that exotic plant dominance is self-reinforced by impacts on ecosystem processes, leading to persistent stable states. Invaders have been documented to modify fire regimes, alter soil nutrients or shift microbial communities in ways that feed back to benefit themselves over competitors. However, few studies have followed invasions through time to ask whether ecosystem impacts and feedbacks persist. Here we return to woodland sites in Hawai′i Volcanoes National Park that were invaded by exotic C4 grasses in the 1960s, the ecosystem impacts of which were studied intensively in the 1990s. We show that positive feedbacks between exotic grasses and soil nitrogen cycling have broken down, but rather than facilitating native vegetation, the weakening feedbacks facilitate new exotic species. Data from the 1990s showed that exotic grasses increased nitrogen-mineralization rates by two- to fourfold, but were nitrogen-limited. Thus, the impacts of the invader created a positive feedback early in the invasion. We now show that annual net soil nitrogen mineralization has since dropped to pre-invasion levels. In addition, a seedling outplanting experiment that varied soil nitrogen and grass competition demonstrates that the changing impacts of grasses do not favour native species re-establishment. Instead, decreased nitrogen availability most benefits another aggressive invader, the nitrogen-fixing tree Morella faya. Long-term studies of invasions may reveal that ecosystem impacts and feedbacks shift over time, but that this may not benefit native species recovery.
Plant Ecology | 2006
Meredith A. Thomsen; Jeffrey D. Corbin; Carla M. D’Antonio
The invasion of European perennial grasses represents a new threat to the native coastal prairie of northern California. Many coastal prairie sites also experience anthropogenic nitrogen (N) deposition or increased N availability as a result of invasion by N-fixing shrubs. We tested the hypothesis that greater seedling competitive ability and greater responsiveness to high N availability of exotic perennial grasses facilitates their invasion in coastal prairie. We evaluated pairwise competitive responses and effects, and the occurrence of asymmetrical competition, among three common native perennial grasses (Agrostis oregonensis, Festuca rubra, and Nassella pulchra) and three exotic perennial grasses (Holcus lanatus, Phalaris aquatica, and Festuca arundinacea), at two levels of soil N. We also compared the root and shoot biomass and response to fertilization of singly-grown plants, so we could evaluate how performance in competition related to innate plant traits. Competitive effects and responses were negatively correlated and in general varied continuously across native and exotic species. Two exceptions were the exotic species Holcus, which had large effects on neighbors and small responses to them, and competed asymmetrically with all other species in the experiment, and the native grass Nassella, which had strong responses to but little effect on neighbors, and was out-competed by all but one other species in the experiment. High allocation to roots and high early relative growth rate appear to explain Holcus’s competitive dominance, but its shoot biomass when grown alone was not significantly greater than those of the species it out-competed. Competitive dynamics were unaffected by fertilization. Therefore, we conclude that seedling competitive ability alone does not explain the increasing dominance of exotic perennial grasses in California coastal prairie. Furthermore, since native and exotic species responded individualistically, grouping species as ‘natives’ and ‘exotics’ obscured underlying variation within the two categories. Finally, elevated soil N does not appear to influence competition among the native and exotic perennial grasses studied, so reducing soil N pools may not be a critical step for the restoration of California coastal prairie.
Plant Ecology | 2010
Jeffrey D. Corbin; Carla M. D’Antonio
Invasive plants have often been shown to possess novel traits such as the ability to fix nitrogen, access unused resource pools, or the ability to exude allelopathic chemicals. We describe a case of a successful invasion where the native and non-native species are very similar in most life-history characteristics including their growth forms, lifespan, and degree of summertime activity. Data from permanent transects suggest that exotic perennial grass invaders can establish into intact native-dominated grasslands, achieving cover values from 6 to 71% over several years. We also established a 4-year competition experiment to test the effect of each group—the native and non-native perennial grasses—on the other. Competitive interactions were found to consistently favor the non-native grasses: native perennial grass productivity was significantly lower in plots with exotic perennial grasses as compared to plots without exotic perennial grasses. By contrast, productivity of the exotic perennial grasses was not reduced by the presence of the native perennial grasses. These results suggest that competitive ability, rather than a unique trait, has contributed to the success of the exotic perennial grasses in our system. Management tools to control exotic perennial grass invasions are likely to negatively influence native perennial grass populations, as strategies that succeed against the invasive species may kill or reduce the native species as well.
Biological Invasions | 2011
Karen A. Haubensak; Carla M. D’Antonio
Whether a novel trait of an invader directly contributes to increased establishment of that invader is a relatively unstudied question in plant ecology. Nitrogen (N)-fixing shrubs comprise a significant subset of grassland invaders worldwide, which suggests the potential importance of the novel trait of N-fixation in the invasion process. We indirectly tested the importance of N-fixation in the invasion of Genista monspessulana (French broom) in a California grassland by alleviating N and phosphorus (P) limitation to the grassland matrix. Grassland productivity was co-limited by N and P; N alone did not release the resident vegetation, and did not affect Genista performance. Genista was strongly limited by P: seedlings had more nodules, greater leaf N concentration, and higher growth and survival with P additions. When N was added with P, however, growth of the resident vegetation was 50–70% greater than with N or P alone, accompanied by decreases in Genista performance. This suggests that the advantage conferred to Genista by N-fixation was dampened when the resident vegetation was released from nutrient limitation.
Plant Ecology | 2017
Stephanie G. Yelenik; Carla M. D’Antonio; Elizabeth August-Schmidt
It has been shown in some cases that nitrogen (N) addition to soil will increase abundance of plant invaders because many invaders have traits that promote rapid growth in response to high resource supply. Similarly, it has been suggested, and sometimes shown, that decreasing soil N via carbon (C) additions can facilitate native species recovery. Yet all species are unlikely to respond to resource supply in the same way. We asked how soil nutrients and competition affect native and exotic woody species in a restoration experiment where we added N or C, and crossed soil manipulation with the manipulation of dominant exotic grass abundance in a Hawaiian subtropical woodland. We related changes in survival and growth of outplanted individuals to native/exotic status and plant traits. As a group, N-fixers showed reduced survival compared to non-fixers in response to added N, with Morella faya (exotic) and Acacia koa (native) having dramatic negative responses. Among non-fixers, species with greater foliar %N had more positive survival responses to increasing soil N. Specific leaf area was not predictive of responses to nutrients or competition. In general, responses to carbon addition were weak, although reducing competition from existing exotic grasses was beneficial for all outplanted species, with N-fixers showing the most positive response. We conclude that commonly used restoration strategies to clear exotic species or lower soil resources with C addition will most greatly benefit N-fixing species, which themselves may be unwanted invaders. Thus statements about the influence of increased soil N on invasions should be carefully dissected by considering the traits (such as N-fixation status) of the regional species pool.
Archive | 2016
Carla M. D’Antonio; Elizabeth August-Schmidt; Barbara Fernandez-Going
Established populations of nonnative plant species occur in most ecosystems. The ecological effects of these invaders can vary from benign to substantial, while management perspectives on them range from beneficial to harmful. In this chapter we focus on those nonnative plant species considered ‘harmful’, defined here as having an ecological and/or economic impact undesirable to management and they are typical targets of management and restoration actions. For information on animal invaders, see Simberloff and Rejmanek (2010). Harmful invaders have been variously referred to as “invasive” (Mack et al. 2000) or “transformer” plant species (Richardson et al. 2000). While there is some management concern over rapidly spreading native species (Carey et al. 2012), we use the term invasive in the sense of Richardson et al. (2000): nonnative (alien, nonindigenous or exotic) species with the potential for rapid population growth. In many cases ecological impacts of the species have not been measured. Within a restoration context, we assume invasive species would be a target when they (1) already dominate a restoration site or its seedbank and are difficult to remove, (2) may leave behind legacies after removal, or (3) could invade a restoration site and co-opt the direction of postdisturbance/restoration succession by interfering with desired species.
Plant and Soil | 2006
Anthony Darrouzet-Nardi; Carla M. D’Antonio; Todd E. Dawson
Archive | 2004
Jeffrey D. Corbin; Carla M. D’Antonio; Susan J. Bainbridge